Overview
The Department of Pharmaceutical Sciences offers undergraduate and graduate students unparalleled training for future careers in biomedical research, pharmacy, medicine, and various other positions within the pharmaceutical industry. Our innovative, rigorous curriculum integrates concepts from biology, chemistry, chemical engineering, pharmacology and physiology, and collaborative interdisciplinary research is supported by joint faculty appointments shared with other UCI departments. Alumni pursue exciting professional opportunities that improve our society’s health and well-being.

Degrees
<table>
<thead>
<tr>
<th>Pharmaceutical Sciences</th>
<th>B.S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacological Sciences*</td>
<td>M.S., Ph.D.</td>
</tr>
</tbody>
</table>

* Offered in conjunction with the Department of Pharmacology.

Undergraduate Program

The B.S. program in Pharmaceutical Sciences trains students in a multidisciplinary approach so that they can contribute to the advancement of new pharmaceutical technologies such as accelerated chemical synthesis, molecular-based assays using cloned enzymes, biopharmaceutical techniques, novel diagnostics, computational chemistry, and gene therapies. Pharmaceutical scientists are rapidly changing the field of drug discovery and development. The graduates of this program may seek employment in public and private sectors or choose to pursue graduate degrees such as a Ph.D., M.D., or Pharm.D.

Undergraduate Honors. Honors at graduation, e.g., cum laude, magna cum laude, summa cum laude, are awarded to approximately the top 16 percent of the graduating seniors. To be eligible for honors, a general criterion is that students must have completed at least 72 units in residence at a University of California campus. Other important factors are considered visit at Honors Recognition.

Admission to the Major

Students may be admitted to the Pharmaceutical Sciences major upon entering the University as freshmen, via change of major, or as transfer students from other colleges and universities.

Information about change-of-major policies is available in the Department of Pharmaceutical Sciences office and at the UCI Change of Major Criteria website (http://www.changeofmajor.uci.edu).

Transfer Students: All applicants must have completed the following required courses with a grade of B- or better in all courses: one year of general chemistry with laboratory equivalent to UCI’s CHEM 1A-CHEM 1B-CHEM 1C and CHEM 1LC-CHEM 1LD AND one year of organic chemistry with laboratory equivalent to UCI’s CHEM 51A-CHEM 51B-CHEM 51C and CHEM 51LC-CHEM 51LD-CHEM 51LD. Transfer students must also complete two years of biology courses equivalent to UCI’s BIO SCI 93, BIO SCI 94, BIO SCI 97, BIO SCI 98, and BIO SCI 99. Moreover, all transfer applicants must have a cumulative GPA of 3.0 or better. Additional courses that are recommended, but not required: one year of calculus and one year of calculus-based physics.

Requirements for the B.S. in Pharmaceutical Sciences

All students must meet the University Requirements.

Major Requirements

A. Lower-Division Requirements:

1. Select one of the following sequences:

<table>
<thead>
<tr>
<th>CHEM 1A- 1B- 1C</th>
<th>General Chemistry and General Chemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM H2A- H2B- H2C</td>
<td>Honors General Chemistry and Honors General Chemistry</td>
</tr>
</tbody>
</table>

and select one of the following lab sequences:
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
</table>
| CHEM 1LC- 1LD | General Chemistry Laboratory
and General Chemistry Laboratory |
| CHEM H2LA- H2LB- H2LC | Honors General Chemistry Laboratory
and Honors General Chemistry Laboratory
and Honors General Chemistry Laboratory |
| CHEM M2LA- M2LB- M3LC | Majors General Chemistry Laboratory
and Majors General Chemistry Laboratory
and Majors Quantitative Analytical Chemistry Laboratory |

Select one of the following organic chemistry sequences and accompanying labs:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
</table>
| CHEM 51A- 51B- 51C | Organic Chemistry
and Organic Chemistry
and Organic Chemistry |
| CHEM 51LB- 51LC- 51LD | Organic Chemistry Laboratory
and Organic Chemistry Laboratory
and Organic Chemistry Laboratory |

or

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
</table>
| CHEM H52A- H52B- H52C | Honors Organic Chemistry
and Honors Organic Chemistry
and Honors Organic Chemistry |
| CHEM H52LA- H52LB- H52LC | Honors Organic Chemistry Laboratory
and Honors Organic Chemistry Laboratory
and Honors Organic Chemistry Laboratory |

2. Complete:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
</table>
| MATH 2A- 2B | Single-Variable Calculus
and Single-Variable Calculus |

and select one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2D</td>
<td>Multivariable Calculus</td>
</tr>
<tr>
<td>MATH 3A</td>
<td>Introduction to Calculus</td>
</tr>
<tr>
<td>STATS 7</td>
<td>Basic Statistics</td>
</tr>
<tr>
<td>STATS 8</td>
<td>Introduction to Biological Statistics</td>
</tr>
</tbody>
</table>

3. Select one of the following physics sequences:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
</table>
| PHYSICS 3A- 3B- 3C | Basic Physics I
and Basic Physics II
and Basic Physics III |

or

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
</table>
| PHYSICS 7C- 7D- 7E | Classical Physics
and Classical Physics
and Classical Physics |

4. Complete:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO SCI 93</td>
<td>From DNA to Organisms</td>
</tr>
<tr>
<td>BIO SCI 94</td>
<td>From Organisms to Ecosystems</td>
</tr>
<tr>
<td>BIO SCI 97</td>
<td>Genetics</td>
</tr>
<tr>
<td>BIO SCI 98</td>
<td>Biochemistry</td>
</tr>
<tr>
<td>BIO SCI 99</td>
<td>Molecular Biology</td>
</tr>
</tbody>
</table>

5. Complete: ²

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHRMSCI 1</td>
<td>New Student Seminar</td>
</tr>
<tr>
<td>PHRMSCI 42</td>
<td>Life 101</td>
</tr>
<tr>
<td>PHRMSCI 76</td>
<td>Ethical Conduct of Research</td>
</tr>
</tbody>
</table>

B. Upper-Division Requirements:

Complete:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO SCI 100</td>
<td>Scientific Writing</td>
</tr>
<tr>
<td>BIO SCI 194S</td>
<td>Safety and Ethics for Research</td>
</tr>
</tbody>
</table>
| PHRMSCI 120- 120L | Human Physiology
and Human Physiology Lab ² |
C. Upper-Division Electives (8 units):
The upper-division electives may be selected from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO SCI D103</td>
<td>Cell Biology</td>
</tr>
<tr>
<td>BIO SCI D104</td>
<td>Developmental Biology</td>
</tr>
<tr>
<td>BIO SCI D111L</td>
<td>Developmental and Cell Biology Laboratory</td>
</tr>
<tr>
<td>BIO SCI D136</td>
<td>Human Anatomy</td>
</tr>
<tr>
<td>BIO SCI D137</td>
<td>Eukaryotic and Human Genetics</td>
</tr>
<tr>
<td>BIO SCI D145</td>
<td>Genomics, Development, and Medicine</td>
</tr>
<tr>
<td>BIO SCI D148</td>
<td>Development and Disease</td>
</tr>
<tr>
<td>BIO SCI D170</td>
<td>Applied Human Anatomy</td>
</tr>
<tr>
<td>BIO SCI E136</td>
<td>The Physiology of Human Nutrition</td>
</tr>
<tr>
<td>BIO SCI E142W</td>
<td>Writing/Philosophy of Biology</td>
</tr>
<tr>
<td>BIO SCI E189</td>
<td>Environmental Ethics</td>
</tr>
<tr>
<td>BIO SCI M114</td>
<td>Advanced Biochemistry</td>
</tr>
<tr>
<td>BIO SCI M114L</td>
<td>Biochemistry Laboratory</td>
</tr>
<tr>
<td>BIO SCI M116L</td>
<td>Molecular Biology Laboratory</td>
</tr>
<tr>
<td>BIO SCI M118L</td>
<td>Experimental Microbiology Laboratory</td>
</tr>
<tr>
<td>BIO SCI M120</td>
<td>Signal Transduction in Mammalian Cells</td>
</tr>
<tr>
<td>BIO SCI M121</td>
<td>Immunology with Hematology</td>
</tr>
<tr>
<td>BIO SCI M122</td>
<td>General Microbiology</td>
</tr>
<tr>
<td>BIO SCI M123</td>
<td>Introduction to Computational Biology</td>
</tr>
<tr>
<td>BIO SCI M124A</td>
<td>Virology</td>
</tr>
<tr>
<td>BIO SCI M124B</td>
<td>Viral Pathogenesis and Immunity</td>
</tr>
<tr>
<td>BIO SCI M125</td>
<td>Molecular Biology of Cancer</td>
</tr>
<tr>
<td>BIO SCI M137</td>
<td>Microbial Genetics</td>
</tr>
<tr>
<td>BIO SCI M143</td>
<td>Human Parasitology</td>
</tr>
<tr>
<td>BIO SCI M144</td>
<td>Cell Organelles and Membranes</td>
</tr>
<tr>
<td>BIO SCI N110</td>
<td>Neurobiology and Behavior</td>
</tr>
<tr>
<td>BIO SCI N113L</td>
<td>Neurobiology Laboratory</td>
</tr>
<tr>
<td>BIO SCI N153</td>
<td>Neuropharmacology</td>
</tr>
<tr>
<td>BIO SCI N154</td>
<td>Molecular Neurobiology</td>
</tr>
<tr>
<td>CHEM 107</td>
<td>Inorganic Chemistry</td>
</tr>
<tr>
<td>CHEM 107L</td>
<td>Inorganic Chemistry Laboratory</td>
</tr>
<tr>
<td>CHEM 125</td>
<td>Advanced Organic Chemistry</td>
</tr>
<tr>
<td>CHEM 128</td>
<td>Introduction to Chemical Biology</td>
</tr>
<tr>
<td>CHEM 128L</td>
<td>Introduction to Chemical Biology Laboratory Techniques</td>
</tr>
<tr>
<td>CHEM 138</td>
<td>Introduction to Computational Organic Chemistry</td>
</tr>
<tr>
<td>CHEM 156</td>
<td>Advanced Laboratory in Chemistry and Synthesis of Materials</td>
</tr>
<tr>
<td>CHEM 160</td>
<td>Organic Synthesis Laboratory</td>
</tr>
<tr>
<td>CHEM 170</td>
<td>Radioisotope Techniques</td>
</tr>
<tr>
<td>PUBHLTH 121</td>
<td>Introduction to Complementary and Alternative Medicine</td>
</tr>
</tbody>
</table>
Department of Pharmaceutical Sciences

1. Course may not be used to satisfy more than one requirement.
2. Courses must be completed with a grade of C- or better.

Upper-Division Writing Requirement: Pharmaceutical Sciences majors satisfy the upper-division writing requirement by completing BIO SCI 100 with a grade of C or better, followed by the completion of PHRMSCI 174L and PHRMSCI 177L.

NOTE: Double majors with Pharmaceutical Sciences, Public Health Sciences, Nursing Science, Biomedical Engineering: Premedical, or with any of the School of Biological Sciences majors are not permitted.

Sample Program — Pharmaceutical Sciences

<table>
<thead>
<tr>
<th>Freshman</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIO SCI 93</td>
<td>BIO SCI 94</td>
<td>CHEM 1C- 1LC</td>
</tr>
<tr>
<td>CHEM 1A</td>
<td>CHEM 1B</td>
<td>MATH 2A</td>
</tr>
<tr>
<td>WRITING 39B or HUMAN 1A</td>
<td>WRITING 39C or HUMAN 1B</td>
<td>HUMAN 1C (or General Education)</td>
</tr>
<tr>
<td>PHRMSCI 1</td>
<td>General Education</td>
<td>General Education</td>
</tr>
<tr>
<td>General Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sophomore</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIO SCI 97</td>
<td>BIO SCI 98</td>
<td>BIO SCI 99</td>
</tr>
<tr>
<td>CHEM 51A- 1LD</td>
<td>CHEM 51B- 51LB</td>
<td>CHEM 51C- 51LC</td>
</tr>
<tr>
<td>MATH 2B</td>
<td>STATS 7, 8, MATH 2D, or MATH 3A</td>
<td>General Education</td>
</tr>
<tr>
<td>BIO SCI 194S</td>
<td>PHRMSCI 42</td>
<td>General Education</td>
</tr>
<tr>
<td>General Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junior</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHRMSCI 120- 120L</td>
<td>PHRMSCI 170A</td>
<td>PHRMSCI 170B</td>
</tr>
<tr>
<td>BIO SCI 100</td>
<td>General Education</td>
<td>Elective</td>
</tr>
<tr>
<td>PHYSICS 3A, 7C, or 7LD</td>
<td>PHYSICS 3B, 7D, or 7LD</td>
<td>PHYSICS 3C or 7E</td>
</tr>
<tr>
<td>General Education</td>
<td>Elective</td>
<td></td>
</tr>
<tr>
<td>Senior</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHRMSCI 171</td>
<td>PHRMSCI 177- 177L</td>
<td>General Education</td>
</tr>
<tr>
<td>PHRMSCI 174- 174L</td>
<td>General Education</td>
<td>Elective</td>
</tr>
<tr>
<td>General Education</td>
<td>Elective</td>
<td></td>
</tr>
<tr>
<td>PHRMSCI 172</td>
<td>Elective</td>
<td></td>
</tr>
</tbody>
</table>

Graduate Programs

David Mobley, Graduate Program Advisor
Graduate Student Affairs: 949-824-1991
pharmsci-grad@uci.edu (pharmsci-grad@uci.edu)
http://www.pharmsci.uci.edu

The Department of Pharmaceutical Sciences currently offers two graduate programs: the Ph.D. in Pharmacological Sciences and the Master of Science in Pharmacology (MSP).

Ph.D. in Pharmacological Sciences

The Ph.D. in Pharmacological Sciences provides a unique opportunity for students interested in any scientific discipline represented by the Pharmaceutical Sciences faculty to have a year of broad, interdisciplinary training followed by focused doctoral research in the Pharmaceutical Sciences research group of their choice. Students in the program choose one of three concentrations/curriculum paths in Pharmaceutical Sciences, Pharmacology, or Medicinal Chemistry. At the end of their first year of interdisciplinary training, they transition into a research group to begin their more focused doctoral research under the guidance of a Pharmaceutical Sciences faculty member.

View the Ph.D. in Pharmacological Sciences program requirements here.

Master of Science in Pharmacology (MSP) Program

The MSP is a two-year, online degree program geared toward teaching students:

- The fundamental principles of pharmacology
- Mechanisms of drug action
• Current topics in drug discovery
• Strategies, techniques and critical thinking skills needed for drug research

The program is designed for working professionals who are interested in advancing in their careers or enhancing their competitiveness for admission to other degree programs.

View the MSP program requirements here.

For more information on both programs, visit the Department of Pharmaceutical Sciences website (http://pharmsci.uci.edu/graduate-students).

Faculty

Amal Alachkar, Ph.D. University of Manchester, Associate Professor of Teaching of Pharmaceutical Sciences (neurotransmitter systems, molecular pharmacology, neuropsychopharmacology)

Claudia Benavente, Ph.D. University of Arizona, Assistant Professor of Pharmaceutical Sciences; Developmental and Cell Biology (genetics, epigenetics, cancer, pediatric cancer, retinoblastoma, osteosarcoma)

Bruce Blumberg, Ph.D. University of California, Los Angeles, Professor of Developmental and Cell Biology; Biomedical Engineering; Environmental Health Sciences; Pharmaceutical Sciences (gene regulation by nuclear hormone receptors in vertebrate development physiology, endocrine disruption)

A. Richard Chamberlin, Ph.D. University of California, San Diego, Department Chair and Professor Emeritus of Pharmaceutical Sciences; Chemistry (chemical biology, organic and synthetic)

John Charles Chaput, Ph.D. University of California, Riverside, Professor of Pharmaceutical Sciences; Chemistry; Molecular Biology and Biochemistry (chemical and synthetic biology)

Olivier Civelli, Ph.D. Swiss Federal Institute of Technology in Zurich, Professor of Pharmacology; Developmental and Cell Biology; Pharmaceutical Sciences (novel neuroactive molecules)

Melanie Cocco, Ph.D. Pennsylvania State University, Associate Professor of Molecular Biology and Biochemistry; Pharmaceutical Sciences

Dan M. Cooper, M.D. University of California, San Francisco, Professor of Pediatrics; Biomedical Engineering; Pharmaceutical Sciences

John P. Fruehauf, M.D. Rush University, Professor Emeritus of Medicine; Pharmaceutical Sciences

Celia Goulding, Ph.D. King’s College London, Professor of Molecular Biology and Biochemistry; Pharmaceutical Sciences

Stephen Hanessian, Ph.D. Ohio State University, Director of Medicinal Chemistry and Pharmacology Graduate Program and Professor of Pharmaceutical Sciences; Chemistry (organic chemistry, medicinal chemistry)

Lan Huang, Ph.D. University of Florida, Professor of Physiology and Biophysics; Biological Chemistry; Biomedical Engineering; Pharmaceutical Sciences

Mahtab F. Jafari, Pharm.D. University of California, San Francisco, Vice Chair and Director of the Center for Healthspan Pharmacology and Professor of Pharmaceutical Sciences; Ecology and Evolutionary Biology (anti-aging pharmacology and preventive medicine)

Young Jik Kwon, Ph.D. University of Southern California, Professor of Pharmaceutical Sciences; Biomedical Engineering; Chemical and Biomolecular Engineering; Molecular Biology and Biochemistry (gene therapy, drug delivery, cancer-targeted therapeutics, combined molecular imaging and therapy, cancer vaccine)

Anthony D. Long, Ph.D. McMaster University, Professor of Ecology and Evolutionary Biology; Pharmaceutical Sciences

Andrej Luptak, Ph.D. Yale University, Professor of Pharmaceutical Sciences; Chemistry; Molecular Biology and Biochemistry (chemical biology)

David L. Mobley, Ph.D. University of California, Davis, Vice Chair and Professor of Pharmaceutical Sciences; Chemistry (chemical biology, physical chemistry and chemical physics, theoretical and computational)

Trina Norden-Krichmar, Ph.D. The Scripps Research Institute, Assistant Professor of Epidemiology; Pharmaceutical Sciences

Lawrence Pion, Pharm.D. M.A. University of Southern California, Assistant Adjunct Professor of Pharmaceutical Sciences

Thomas L. Poulos, Ph.D. University of California, San Diego, Distinguished Professor of Molecular Biology and Biochemistry; Chemistry; Pharmaceutical Sciences (chemical biology)

Jennifer A. Prescher, Ph.D. University of California, Berkeley, Professor of Chemistry; Molecular Biology and Biochemistry; Pharmaceutical Sciences (chemical biology, organic and synthetic)
Paolo Sassone-Corsi, Ph.D. University of Naples Federico II, Donald Bren Professor and Distinguished Professor of Biological Chemistry; Microbiology and Molecular Genetics; Pharmaceutical Sciences; Pharmacology

Samuel E. Schriner, Ph.D. University of Washington, Assistant Professor of Teaching of Pharmaceutical Sciences (aging, botanicals, genetics, biochemistry, mitochondria)

Robert Spitale, Ph.D. University of Rochester, Associate Professor of Pharmaceutical Sciences; Chemistry; Molecular Biology and Biochemistry (chemistry, chemical biology, RNA biology)

Shiou-Chuan (Sheryl) Tsai, Ph.D. University of California, Berkeley, Professor of Molecular Biology and Biochemistry; Chemistry; Pharmaceutical Sciences

Weian Zhao, Ph.D. McMaster University, Associate Professor of Pharmaceutical Sciences; Biomedical Engineering; Materials Science and Engineering (stem cell therapy, diagnostics, biosensors, nano- and microtechnology, aptamers)

Courses

PHRMSCI 1. New Student Seminar. 1 Unit.
Weekly meetings consisting of presentations by faculty, professional staff, and Peer Academic Advisors provide information about the Pharmaceutical Sciences major, campus resources, learning skills, and special programs and opportunities.

Grading Option: Pass/no pass only.

Restriction: Pharmaceutical Sciences Majors only. New students only.

PHRMSCI 3. Professional Development and Careers in the Pharmaceutical Sciences. 1 Workload Unit.
Designed to help Pharmaceutical Science majors select a career track and prepare for graduate program applications and careers in industry.

Grading Option: Workload Credit Letter Grade with P/NP.

Restriction: Juniors only. Pharmaceutical Sciences Majors only.

PHRMSCI 42. Life 101. 1 Unit.
Covers the latest scientific work on the impact of nutrition, exercise, and lifestyle choices on mental and physical health. The course will motivate students to make positive changes by fostering personal growth.

PHRMSCI 76. Ethical Conduct of Research. 2 Units.
Covers the ethical responsibilities of biomedical scientists. Topics include, as discussions and case studies, the high standards of science, the responsible conduct of research, animal experimentation, and clinical trials as they relate to the pharmaceutical sciences.

PHRMSCI H80. Drugs and Society. 4 Units.
Where drugs come from, how drugs work, how and why people abuse drugs, the costs of drug abuse on society, which drugs are commonly abused, and how drug abuse can be prevented and treated. Course intended for non-science majors.

Prerequisite: Recommended: High school chemistry and biology.

Restriction: Campuswide Honors Collegium students only.

PHRMSCI 90. Speaking about Science. 4 Units.
Students learn to effectively prepare and present public speeches and slide presentations. Included are storytelling, informative, commemorative, and persuasive speeches, and scientific presentation. Evaluating speeches and strategies to reduce speaker apprehension is also covered.

Restriction: Pharmaceutical Sciences Majors have first consideration for enrollment.

PHRMSCI 120. Human Physiology. 4 Units.
Covers the function of the human body. All major organ systems are discussed. Designed to prepare students for healthcare careers, such as medicine, pharmacy, dentistry, and for research careers which require basic knowledge of how the human body functions.

Corequisite: PHRMSCI 120L
Prerequisite: BIO SCI 99

Overlaps with BIO SCI E109.
PHRMSCI 120L. Human Physiology Lab. 3 Units.
Designed to complement PHRMSCI 120. Computer-based lab simulations will be used to study the function of the human body. Class will physically meet for review sessions and exams.
Corequisite: PHRMSCI 120
Prerequisite: BIO SCI E109
Overlaps with BIO SCI E112L.

PHRMSCI 155. Neuropsychopharmacology. 4 Units.
Mechanisms underlying chemical signaling processes in the nervous system. Fundamental knowledge for understanding the cellular and molecular actions of drugs and their mechanisms of action on synaptic transmission. Applied neuropsychopharmacology including major drug classes and therapeutic uses.
Prerequisite: PHRMSCI 170A. PHRMSCI 170A with a grade of C- or better
Restriction: Upper-division students only.

PHRMSCI 163. Pharmacogenomics and Epigenetics. 4 Units.
Survey of the genetic and epigenetic basis of inter-subject variability in response to drugs. Covers drug efficacy, safety, and need for their optimization in pharmacotherapy. Emphasizes genetic mechanisms of polymorphisms in the pharmacokinetics and pharmacodynamics of representative therapeutic drugs.
Prerequisite: BIO SCI 99
Concurrent with PHRMSCI 263.

PHRMSCI 170A. Molecular Pharmacology I. 4 Units.
Molecular basis of drug-receptor action at the molecular and cellular levels. Structure-function of drug targets emphasizing enzymes, ion channels, and membrane transport proteins. Understanding how the drugs’ mechanisms of action contribute to the development of more efficacious and safer drugs.
Prerequisite or corequisite: (CHEM 51C or CHEM H52C) and (PHRMSCI 120 or BIO SCI E109)
Restriction: Pharmaceutical Sciences Majors have first consideration for enrollment.

PHRMSCI 170B. Molecular Pharmacology II. 4 Units.
Introductory survey covering the molecular mechanisms of drugs that target the nervous system, such as anxiolytics, antidepressants, antipsychotics, hypnotics, muscle relaxants, and recreational drugs; drugs related to the immune system, including antibiotics, antihistamines, and immunosuppressants; drugs used to treat cancer.
Prerequisite: PHRMSCI 170A

PHRMSCI 171. Physical Biochemistry. 4 Units.
Thermodynamics and kinetic fundamentals as applied to problems relevant to pharmaceutical sciences such as receptor/enzyme-ligand interactions. Fundamentals of biophysical methods used in the pharmaceutical sciences including structure determination and biomolecular spectroscopy.
Prerequisite: MATH 2B and PHYSICS 3C and (CHEM 1C or CHEM H2C) and BIO SCI 99
Restriction: Pharmaceutical Sciences Majors have first consideration for enrollment.

PHRMSCI 172. Topics in Pharmaceutical Sciences. 2 Units.
Presents information about various fields of research, study, careers, and graduate school opportunities in pharmaceutical sciences. Taught by guest lecturers from various disciplines including 199 research course faculty. Helps Pharmaceutical Sciences students select electives appropriate to their future goals.
Prerequisite or corequisite: BIO SCI 99 and (CHEM 51C or CHEM H52C)
Grading Option: Pass/no pass only.

PHRMSCI 173. Pharmacotherapy. 4 Units.
An exploration of the clinical application of medications to selected disease states. Focus is on an understanding of underlying principles of pharmacology and how this knowledge can be applied to treatment of diseases.
Prerequisite or corequisite: PHRMSCI 170B
PHRMSCI 174. Biopharmaceutics and Nanomedicine. 4 Units.
Introduces theories and tools of new drug formulations. Particularly new novel therapeutics based on biological materials, pathological characteristics utilized to achieve the maximum efficacy and specificity, and drug delivery systems based on emerging nanotechnology are extensively discussed.

Prerequisite: PHRMSCI 170B

Restriction: Pharmaceutical Sciences Majors have first consideration for enrollment.

PHRMSCI 174L. Biopharmaceutics and Nanomedicine Lab. 3 Units.
Introduction to cancer drug screening using cellular models, and confirmation of comprehensive therapeutic efficacy using a live animal model. Includes basic cell culture, cytotoxicity assays, cell analysis, drug circulation test, and tumor eradication and imaging experiments. Materials fee.

Prerequisite: PHRMSCI 170B and BIO SCI 100

PHRMSCI 175. Drug Discovery Computing Techniques. 4 Units.
Techniques used in computer-aided drug discovery, including theory behind these techniques and practical applications. Topics include scientific computing; python; classical force fields and simulations; visualization and movie-making; quantum mechanics in drug discovery; molecular dynamics; solvation models; and several others.

Prerequisite: CSE 41 or I&C SCI 31. CSE 42 or I&C SCI 32 is recommended.

Concurrent with PHRMSCI 275.

PHRMSCI 177. Medicinal Chemistry. 4 Units.
An introduction of the basics of drug activity and mechanisms. Strategies used to identify lead compounds such as natural product chemistry, combinatorial chemistry, molecular modeling, and high-throughput screening. Relationship of molecular structure to pharmacological activity.

Prerequisite: CHEM 51A and CHEM 51B and CHEM 51C and (BIO SCI 98 or CHEM 128)

Same as CHEM 177.

Restriction: Pharmaceutical Sciences Majors have first consideration for enrollment.

PHRMSCI 177L. Medicinal Chemistry Laboratory. 3 Units.
An introduction of the basics of drug activity and mechanisms. Strategies used to identify lead compounds such as natural product chemistry, combinatorial chemistry, molecular modeling, and high-throughput screening. Relationship of molecular structure to pharmacological activity. Materials fee.

Corequisite: PHRMSCI 177 or CHEM 177.
Prerequisite: CHEM 51A and CHEM 51B and CHEM 51C and BIO SCI 100 and (BIO SCI 98 or CHEM 128)

Same as CHEM 177L.

Restriction: Pharmaceutical Sciences Majors have first consideration for enrollment.

PHRMSCI 178. Stem Cell Therapy . 4 Units.
Introduces new paradigms in regenerative medicine involving stem cells, and emerging molecular, nano- and micro-engineered tools for in vivo imaging that is critical for studying and monitoring regeneration. Selected topics include stem cell biology and in vivo imaging modalities.

Prerequisite: BIO SCI D103

Concurrent with PHRMSCI 278.

PHRMSCI 179. Emerging Technologies in Pharmaceutical Sciences and Medicine. 4 Units.
Introduces emerging, ground-breaking technologies in pharmaceutical sciences and medicine, including pharmacogenomics, genome editing, and stem cell and engineered T cell therapies. Explores these novel technologies with both their underlying theories and forward-thinking applications.

Concurrent with PHRMSCI 279.
PHRMSCI 192. Tutoring in Pharmaceutical Sciences. 2 Workload Units.
Tutoring program with Pharmaceutical Sciences student peers.
Grading Option: Workload Credit P/NP Only.
Repeatability: May be taken for credit 6 times.
Restriction: Pharmaceutical Sciences Peer Tutoring Program students only.

PHRMSCI 197. Professional Internship. 4 Units.
Provides students with opportunity to develop leadership and professional skills necessary for competitive placement in their chosen industry. Students gain new and field-specific skills outside the classroom environment while participating in a supervised internship for a total of 100 hours.
Grading Option: Pass/no pass only.
Repeatability: May be repeated for credit unlimited times.
Restriction: Seniors only.

PHRMSCI 198. Independent Study in Pharmaceutical Sciences. 1-4 Units.
Students interested in independent study should arrange with a faculty member to sponsor and supervise such work. A time commitment of three hours per week per unit is expected. A written report is required at the end of each quarter.
Repeatability: May be taken for credit for 4 units.

PHRMSCI 199. Undergraduate Research. 1-4 Units.
Original research in the laboratory of Pharmaceutical Sciences faculty. Attendance at regular research group meetings is also generally expected, and a quarterly written report is required. Strongly recommended for students considering research careers and/or graduate degree programs.
Repeatability: May be repeated for credit unlimited times.

PHRMSCI H199. Honors Research in Pharmaceutical Sciences. 1-4 Units.
Undergraduate honors research in Pharmaceutical Sciences. A student time commitment of 10-15 hours per week is required.
Repeatability: May be repeated for credit unlimited times.

PHRMSCI 223. Biological Macromolecules. 4 Units.
Introduction to nucleic acid and protein structure, dynamics, and function. Topics include analytical methods, molecular evolution, folding, and catalysis.
Same as CHEM 223.

PHRMSCI 250A. Current Topics in Pharmaceutical Sciences. 1 Unit.
Intended to expose students to the primary literature and current research in the field of Pharmaceutical Sciences. Students analyze and present information for discussion. Guest speakers from academia and industry may participate throughout the quarter.
Grading Option: Satisfactory/unsatisfactory only.
Repeatability: May be taken for credit 3 times.
Restriction: Graduate students only. Math and Computational Biology Majors only.

PHRMSCI 250B. Current Topics in Pharmaceutical Sciences. 1 Unit.
Intended to expose students to the primary literature and current research in the field of Pharmaceutical Sciences. Students analyze and present information for discussion. Guest speakers from academia and industry may participate throughout the quarter.
Prerequisite: PHRMSCI 250A
Grading Option: Satisfactory/unsatisfactory only.
Repeatability: May be taken for credit 3 times.
Restriction: Graduate students only. Math and Computational Biology Majors only.
PHRMSCI 250C. Current Topics in Pharmaceutical Sciences. 1 Unit.
Intended to expose students to the primary literature and current research in the field of Pharmaceutical Sciences. Students analyze and present information for discussion. Guest speakers from academia and industry may participate throughout the quarter.

Prerequisite: PHRMSCI 250B

Grading Option: Satisfactory/unsatisfactory only.

Repeatability: May be taken for credit 3 times.

Restriction: Graduate students only. Math and Computational Biology Majors only.

PHRMSCI 263. Pharmacogenomics and Epigenetics. 4 Units.
Survey of the genetic and epigenetic basis of inter-subject variability in response to drugs. Covers drug efficacy, safety, and the need for their optimization in pharmacotherapy. Emphasizes genetic mechanisms of polymorphisms in the pharmacokinetics and pharmacodynamics of representative therapeutic drugs.

Restriction: Graduate students only.

Concurrent with PHRMSCI 163.

PHRMSCI 264. The RNA World: From Discovery to Mechanism. 4 Units.
Provides a comprehensive understanding of RNA in biology. Use of knowledge gained in organic chemistry, biochemistry, genomics, and molecular biology to understand how RNA is integrated into contemporary biology.

Restriction: Graduate students only.

PHRMSCI 265. New Frontiers in Chemical and Synthetic Biology. 4 Units.
Explores new developments in chemical and synthetic biology that span the areas of chemistry, molecular biology, genetics, bioengineering, systems biology, and computational genomics.

Restriction: Graduate students only.

PHRMSCI 270. Advanced Pharmacology. 4 Units.
Provides a mechanism-based overview of pharmacology with strong emphasis on clinical application of pharmacology. Students learn the most recent advances in pharmacology as they relate to drug discovery, development, and clinical application.

Restriction: Graduate students only.

PHRMSCI 272. Special Topics in Pharmaceutical Sciences. 2-4 Units.
Reserved for current topics of particular interest in areas of pharmaceutical sciences that are not covered by other courses. The subject will vary from year to year, highlighting, for example, significant emerging fields or highly specialized but vital research areas.

Repeatability: Unlimited as topics vary.

Restriction: Graduate students only.

PHRMSCI 274. Nanomedicine. 4 Units.
Students will learn the current challenges in administering drugs to treat highly challenging diseases, the background theories of drug and gene delivery systems, and apply their knowledge in designing innovative forms of therapeutics formulations.

Restriction: Graduate students only.

PHRMSCI 275. Drug Discovery Computing Techniques. 4 Units.
Techniques used in computer-aided drug discovery, including theory behind these techniques and practical applications. Topics include scientific computing; python; classical force fields and simulations; visualization and movie-making; quantum mechanics in drug discovery; molecular dynamics; solvation models; and several others.

Restriction: Graduate students only.

Concurrent with PHRMSCI 175.

PHRMSCI 277. Medicinal Chemistry. 4 Units.
Fundamentals of medicinal chemistry covering diverse aspects of drug design, discovery, synthesis, and development. Molecular basis of drug action with an emphasis on the structure-to-function continuum.
PHRMSCI 278. Stem Cell Therapy. 4 Units.
Introduces new paradigms in regenerative medicine particularly those that involve stem cells, and emerging molecular, nano- and micro-engineered tools for in vivo imaging that is critical for studying and monitoring regeneration.

Restriction: Graduate students only.

PHRMSCI 279. Emerging Technologies in Pharmaceutical Sciences and Medicine. 4 Units.
Introduces emerging, ground-breaking technologies in pharmaceutical sciences and medicine, including pharmacogenomics, genome editing, and stem cell and engineered T cell therapies. Explores these novel technologies with both their underlying theories and forward-thinking applications.

Concurrent with PHRMSCI 179.

PHRMSCI 298. Research Seminar. 2 Units.
Presentation and discussion of current problems and methods in teaching and research in pharmaceutical sciences.

Repeatability: May be repeated for credit unlimited times.

Restriction: Graduate students only.

PHRMSCI 299. Graduate Research. 1-12 Units.
Supervised original research or investigation under the direction of an individual faculty member.

Repeatability: May be repeated for credit unlimited times.

PHRMSCI 399. University Teaching. 1-4 Units.
Limited to Teaching Assistants.

Grading Option: Satisfactory/unsatisfactory only.

Repeatability: May be repeated for credit unlimited times.