Department of Computer Science

Alexandru Nicolau, Department Chair
Rina Dechter, Department Vice Chair
3019 Donald Bren Hall
949-824-1546
http://www.cs.uci.edu/

Overview
With over 45 full-time faculty members, 300+ graduate students, and more than 2,000 undergraduates, we provide a world-class research environment spanning not only the core areas of computer science — including computer architecture, system software, networking and distributed computing, data and information systems, the theory of computation, artificial intelligence, and computer graphics — but also highly interdisciplinary programs, such as biomedical informatics, data mining, security and privacy, and ubiquitous computing.

The diverse research interests of our faculty are reflected directly in our educational programs. Computer Science faculty teach most of the undergraduate and graduate courses for the degree programs in both Computer Science and Information and Computer Science. We jointly offer with our colleagues in The Henry Samueli School of Engineering an undergraduate degree in Computer Science and Engineering, as well as the graduate program in Networked Systems. We also have a major in Computer Game Science, jointly offered with the Department of Informatics.

Our department collaborates with many other institutions in the United States and abroad, and its doors are always open to a multitude of visitors and collaborators from all corners of the globe.

Undergraduate Major in Computer Science
The Computer Science major emphasizes the principles of computing that underlie our modern world, and provides a strong foundational education to prepare students for the broad spectrum of careers in computing. This major can serve as preparation for either graduate study or a career in industry. Students receive a solid background in low-level architecture and systems; middle-level infrastructure, algorithms, and mathematical foundations. This is a highly flexible degree that allows students to explore a broad range of topics in modern computing. In order to achieve some focus in their upper-division studies, students are required to satisfy the requirements for one of the nine specializations described below.

Algorithms. This specialization focuses on fundamental computational techniques, including their analysis and applications to topics in computer vision, computer games, graphics, artificial intelligence, and information retrieval. Topics include data structures, graph and network algorithms, computational geometry, probabilistic algorithms, complexity theory, and cryptography.

Architecture and Embedded Systems. This specialization integrates principles of embedded systems, software, hardware, computer architecture, distributed systems and networks, and prepares students to design and create efficient hardware/software architectures for emerging application areas. Students in this specialization will build upon a strong foundation in software and hardware and learn how to design networked embedded systems, and efficient computer architectures for a diverse set of application domains such as gaming, visualization, search, databases, transaction processing, data mining, and high-performance and scientific computing.

Bioinformatics. This specialization introduces students to the interdisciplinary intersection of biology and medicine with computer science and information technology. Students who complete the specialization will understand biomedical computing problems from the computer science perspectives, and be able to design and develop software that solves computational problems in biology and medicine.

General Computer Science. This specialization allows students to acquire a well-rounded knowledge of computer science that may be tailored to their individual interests. Students choose 11 upper-division computer science courses, including two project courses. This specialization will appeal to those who are interested in a broad education in computer science, or who wish to create their own unique specialization not found in the current list of (other) specializations under this major.

Information. This specialization is intended to prepare students for working with and developing a wide variety of modern data and information systems. Topics covered by this concentration include database management, information retrieval, Web search, data mining, and data-intensive computing.

Intelligent Systems. This specialization will introduce students to the principles underlying intelligent systems, including topics such as representing human knowledge, building automated reasoning systems, developing intelligent search techniques, and designing algorithms that adapt and learn from data. Students in this specialization will use these principles to solve problems across a variety of applications such as computer vision, information retrieval, data mining, automated recommender systems, bioinformatics, as well as individually designed projects.

Networked Systems. This specialization focuses on Internet architecture, Internet applications, and network security. It also encourages students to learn about operating systems, databases, search, programming, embedded systems, and performance.

Systems and Software. This specialization deals with principles and design of systems and software. It emphasizes the interaction between software and the computing infrastructure on which it runs and the performance impact of design decisions. Core topics include the hardware/software interface, languages and compilers, operating systems, parallel and distributed computing. Elective topics include networking, security, graphics, and databases.
Visual Computing. This specialization encompasses the digital capture, processing, synthesis and display of visual data such as images and video. This specialization includes computer vision, image processing and graphics, and covers such topics as the representation of 3D objects, visual recognition of objects and people, interactive and photo-realistic image rendering, and physics and perception of light and color.

The Department also offers a joint undergraduate degree in Computer Science and Engineering, in conjunction with The Henry Samueli School of Engineering; information is available in the Interdisciplinary Studies section of the Catalogue.

Admissions

Freshman Applicants: See the Undergraduate Admissions section.

Transfer Applicants:
Transfer applicants who satisfactorily complete course prerequisites will be given preference for admission. All applicants must complete the following required courses: one year of approved calculus, one year of object-oriented programming (python, java, C++), additional courses as specified by the major, and completion of lower-division writing. Students are encouraged to complete as many of the lower-division degree requirements as possible prior to transfer. Visit the UCI Office of Admissions website for information on transfer requirements for our major.

Major and Minor Restrictions

Bren School of ICS majors (including shared majors, BIM and CSE) pursuing minors within the Bren School of ICS may not count more than five courses toward both the major and minor. Some ICS majors and minors outside of the School are not permitted due to significant overlap. Visit the ICS Student Affairs Office website for Majors and Minors restrictions. (http://www.ics.uci.edu/ugrad/degrees/MajorMinor_Restrictions_Chart.pdf) All students should check the Double Major Restrictions Chart (http://www.ics.uci.edu/ugrad/degrees/Db1_Major_Restr_Chart.pdf) and view our information page (http://www.ics.uci.edu/ugrad/degrees/Double_Majors.php) on double majoring to see what degree programs are eligible for double majoring.

Requirements for the B.S. in Computer Science

All students must meet the University Requirements.

Major Requirements

Lower-division
A. Select one of the following series:

<table>
<thead>
<tr>
<th>Series</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I&C SCI 31-32-33</td>
<td>Introduction to Programming and Programming with Software Libraries and Intermediate Programming</td>
</tr>
<tr>
<td>or</td>
<td>Python Programming and Libraries (Accelerated) and Intermediate Programming</td>
</tr>
</tbody>
</table>

B. Complete:

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I&C SCI 45C</td>
<td>Programming in C/C++ as a Second Language</td>
</tr>
<tr>
<td>I&C SCI 46</td>
<td>Data Structure Implementation and Analysis</td>
</tr>
<tr>
<td>I&C SCI 51</td>
<td>Introductory Computer Organization</td>
</tr>
<tr>
<td>I&C SCI 53</td>
<td>Principles in System Design</td>
</tr>
<tr>
<td>I&C SCI 53L</td>
<td>Principles in System Design Library</td>
</tr>
<tr>
<td>I&C SCI 90</td>
<td>New Students Seminar</td>
</tr>
<tr>
<td>IN4MATX 43</td>
<td>Introduction to Software Engineering</td>
</tr>
<tr>
<td>MATH 2A-2B</td>
<td>Single-Variable Calculus</td>
</tr>
<tr>
<td>or MATH 3A</td>
<td>Introduction to Linear Algebra</td>
</tr>
<tr>
<td>I&C SCI 6B</td>
<td>Boolean Logic and Discrete Structures</td>
</tr>
<tr>
<td>I&C SCI 6D</td>
<td>Discrete Mathematics for Computer Science</td>
</tr>
<tr>
<td>I&C SCI 6N</td>
<td>Computational Linear Algebra</td>
</tr>
<tr>
<td>or MATH 3A</td>
<td>Introduction to Linear Algebra</td>
</tr>
<tr>
<td>STATS 67</td>
<td>Introduction to Probability and Statistics for Computer Science</td>
</tr>
</tbody>
</table>

C. Two courses approved for General Education category II except those offered by CSE, Economics, ICS, or Mathematics. University Studies courses can be used with the approval of the CS Vice Chair for Undergraduate Studies.

Upper-division

A. Core

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPSCI 161</td>
<td>Design and Analysis of Algorithms</td>
</tr>
<tr>
<td>I&C SCI 139W</td>
<td>Critical Writing on Information Technology</td>
</tr>
</tbody>
</table>
B. Upper-division electives: Select 11 upper-division courses from the list below. Sections B-1 and B-2 must be completed as part of the 11 upper-

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPSCI 111–160</td>
<td>Concepts of Programming Language II</td>
</tr>
<tr>
<td>IN4MATX 102</td>
<td>Requirements Analysis and Engineering</td>
</tr>
<tr>
<td>IN4MATX 113</td>
<td>Software Testing, Analysis, and Quality Assurance</td>
</tr>
<tr>
<td>IN4MATX 115</td>
<td>Software Design: Applications</td>
</tr>
<tr>
<td>IN4MATX 121</td>
<td>Software Design: Structure and Implementation</td>
</tr>
<tr>
<td>IN4MATX 124</td>
<td>Internet Applications Engineering</td>
</tr>
<tr>
<td>IN4MATX 131</td>
<td>Human Computer Interaction</td>
</tr>
<tr>
<td>IN4MATX 133</td>
<td>User Interaction Software</td>
</tr>
<tr>
<td>IN4MATX 134</td>
<td>Project in User Interaction Software</td>
</tr>
<tr>
<td>I&C SCI 161</td>
<td>Game Engine Lab</td>
</tr>
<tr>
<td>I&C SCI 162</td>
<td>Modeling and World Building</td>
</tr>
</tbody>
</table>

B-1. Project Courses: Choose at least two projects courses from the following list:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPSCI 113</td>
<td>Computer Game Development</td>
</tr>
<tr>
<td>COMPSCI 114</td>
<td>Projects in Advanced 3D Computer Graphics</td>
</tr>
<tr>
<td>COMPSCI 117</td>
<td>Project in Computer Vision</td>
</tr>
<tr>
<td>COMPSCI 122B</td>
<td>Project in Databases and Web Applications</td>
</tr>
<tr>
<td>COMPSCI 122C</td>
<td>Principles of Data Management</td>
</tr>
<tr>
<td>COMPSCI 125</td>
<td>Next Generation Search Systems</td>
</tr>
<tr>
<td>COMPSCI 133</td>
<td>Advanced Computer Networks</td>
</tr>
<tr>
<td>COMPSCI 142B</td>
<td>Language Processor Construction</td>
</tr>
<tr>
<td>COMPSCI 143B</td>
<td>Project in Operating System Organization</td>
</tr>
<tr>
<td>COMPSCI 145-145L</td>
<td>Embedded Software and Embedded Software Laboratory</td>
</tr>
<tr>
<td>COMPSCI 153</td>
<td>Logic Design Laboratory</td>
</tr>
<tr>
<td>COMPSCI 154</td>
<td>Computer Design Laboratory</td>
</tr>
<tr>
<td>COMPSCI 165</td>
<td>Project In Algorithms And Data Structures</td>
</tr>
<tr>
<td>COMPSCI 175</td>
<td>Project in Artificial Intelligence</td>
</tr>
<tr>
<td>IN4MATX 117</td>
<td>Project in Software System Design</td>
</tr>
<tr>
<td>IN4MATX 134</td>
<td>Project in User Interaction Software</td>
</tr>
</tbody>
</table>

B-2. Specialization: Select and satisfy the requirements for one of the specializations below. (Note: Students may not pursue more than one specialization.)

Some of the specializations include recommended electives. These are courses related to the specialization and intended to help students choose courses to take toward their upper-division elective requirement.

Algorithms

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPSCI 162</td>
<td>Formal Languages and Automata</td>
</tr>
<tr>
<td>COMPSCI 163</td>
<td>Graph Algorithms</td>
</tr>
<tr>
<td>COMPSCI 164</td>
<td>Computational Geometry and Geometric Modeling</td>
</tr>
<tr>
<td>COMPSCI 165</td>
<td>Project In Algorithms And Data Structures</td>
</tr>
<tr>
<td>COMPSCI 167</td>
<td>Introduction to Applied Cryptography</td>
</tr>
<tr>
<td>COMPSCI 169</td>
<td>Introduction to Optimization</td>
</tr>
</tbody>
</table>

Architecture and Embedded Systems: four courses from the following list:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPSCI 145-145L</td>
<td>Embedded Software and Embedded Software Laboratory</td>
</tr>
<tr>
<td>COMPSCI 151</td>
<td>Digital Logic Design</td>
</tr>
<tr>
<td>COMPSCI 152</td>
<td>Computer Systems Architecture</td>
</tr>
<tr>
<td>COMPSCI 153</td>
<td>Logic Design Laboratory</td>
</tr>
<tr>
<td>COMPSCI 154</td>
<td>Computer Design Laboratory</td>
</tr>
</tbody>
</table>

Recommended electives:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPSCI 131</td>
<td>Parallel and Distributed Computing</td>
</tr>
<tr>
<td>COMPSCI 142A</td>
<td>Compilers and Interpreters</td>
</tr>
<tr>
<td>Course</td>
<td>Title</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>COMPSCI 143A</td>
<td>Principles of Operating Systems</td>
</tr>
</tbody>
</table>

Bioinformatics: three courses from the following list:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPSCI 184A</td>
<td>Representations and Algorithms for Molecular Biology</td>
</tr>
</tbody>
</table>

and complete:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPSCI 172B</td>
<td>Neural Networks and Deep Learning</td>
</tr>
<tr>
<td>COMPSCI 184C</td>
<td>Computational Systems Biology</td>
</tr>
</tbody>
</table>

General CS track

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPSCI 111-189, except COMPSCI 161</td>
<td></td>
</tr>
</tbody>
</table>

Information

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPSCI 121</td>
<td>Information Retrieval</td>
</tr>
<tr>
<td>COMPSCI 122A</td>
<td>Introduction to Data Management</td>
</tr>
<tr>
<td>COMPSCI 178</td>
<td>Machine Learning and Data-Mining</td>
</tr>
</tbody>
</table>

and four courses from:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>I&C SCI 45J</td>
<td>Programming in Java as a Second Language</td>
</tr>
<tr>
<td>COMPSCI 122B</td>
<td>Project in Databases and Web Applications</td>
</tr>
<tr>
<td>COMPSCI 125</td>
<td>Next Generation Search Systems</td>
</tr>
<tr>
<td>COMPSCI 132</td>
<td>Computer Networks</td>
</tr>
<tr>
<td>COMPSCI 134</td>
<td>Computer and Network Security</td>
</tr>
<tr>
<td>COMPSCI 141</td>
<td>Concepts in Programming Languages I</td>
</tr>
<tr>
<td>COMPSCI 142A</td>
<td>Compilers and Interpreters</td>
</tr>
<tr>
<td>COMPSCI 143A</td>
<td>Principles of Operating Systems</td>
</tr>
<tr>
<td>COMPSCI 163</td>
<td>Graph Algorithms</td>
</tr>
<tr>
<td>COMPSCI 165</td>
<td>Project In Algorithms And Data Structures</td>
</tr>
<tr>
<td>COMPSCI 167</td>
<td>Introduction to Applied Cryptography</td>
</tr>
<tr>
<td>COMPSCI 179</td>
<td>Algorithms for Probabilistic and Deterministic Graphical Models</td>
</tr>
</tbody>
</table>

at least one of which must be:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPSCI 122B</td>
<td>Project in Databases and Web Applications</td>
</tr>
<tr>
<td>or COMPSCI 125</td>
<td>Next Generation Search Systems</td>
</tr>
<tr>
<td>or COMPSCI 179</td>
<td></td>
</tr>
</tbody>
</table>

Intelligent Systems

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPSCI 171</td>
<td>Introduction to Artificial Intelligence</td>
</tr>
<tr>
<td>COMPSCI 175</td>
<td>Project in Artificial Intelligence</td>
</tr>
<tr>
<td>COMPSCI 178</td>
<td>Machine Learning and Data-Mining</td>
</tr>
</tbody>
</table>

and at least one course from:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPSCI 177</td>
<td>Applications of Probability in Computer Science</td>
</tr>
<tr>
<td>or COMPSCI 179</td>
<td>Algorithms for Probabilistic and Deterministic Graphical Models</td>
</tr>
</tbody>
</table>

and at least one course from:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPSCI 162</td>
<td>Formal Languages and Automata</td>
</tr>
<tr>
<td>COMPSCI 163</td>
<td>Graph Algorithms</td>
</tr>
<tr>
<td>COMPSCI 164</td>
<td>Computational Geometry and Geometric Modeling</td>
</tr>
<tr>
<td>COMPSCI 169</td>
<td>Introduction to Optimization</td>
</tr>
</tbody>
</table>

and at least one course from:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPSCI 116</td>
<td>Computational Photography and Vision</td>
</tr>
<tr>
<td>COMPSCI 121</td>
<td>Information Retrieval</td>
</tr>
<tr>
<td>COMPSCI 125</td>
<td>Next Generation Search Systems</td>
</tr>
</tbody>
</table>

Networked Systems

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPSCI 132</td>
<td>Computer Networks</td>
</tr>
<tr>
<td>COMPSCI 133</td>
<td>Advanced Computer Networks</td>
</tr>
<tr>
<td>COMPSCI 134</td>
<td>Computer and Network Security</td>
</tr>
<tr>
<td>COMPSCI 143A</td>
<td>Principles of Operating Systems</td>
</tr>
</tbody>
</table>

Recommended electives:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>One course from:</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>COMPSCI 122B</td>
<td>Project in Databases and Web Applications</td>
</tr>
<tr>
<td>COMPSCI 143B</td>
<td>Project in Operating System Organization</td>
</tr>
<tr>
<td>Two courses from:</td>
<td></td>
</tr>
<tr>
<td>COMPSCI 122A</td>
<td>Introduction to Data Management</td>
</tr>
<tr>
<td>COMPSCI 131</td>
<td>Parallel and Distributed Computing</td>
</tr>
<tr>
<td>COMPSCI 137</td>
<td>Internet Applications Engineering</td>
</tr>
<tr>
<td>COMPSCI 167</td>
<td>Introduction to Applied Cryptography</td>
</tr>
<tr>
<td>COMPSCI 145-145L</td>
<td>Embedded Software and Embedded Software Laboratory</td>
</tr>
<tr>
<td>COMPSCI 163</td>
<td>Graph Algorithms</td>
</tr>
<tr>
<td>COMPSCI 169</td>
<td>Introduction to Optimization</td>
</tr>
<tr>
<td>Systems and Software: three courses from the following list:</td>
<td></td>
</tr>
<tr>
<td>COMPSCI 131</td>
<td>Parallel and Distributed Computing</td>
</tr>
<tr>
<td>COMPSCI 141</td>
<td>Concepts in Programming Languages I</td>
</tr>
<tr>
<td>COMPSCI 142A</td>
<td>Compilers and Interpreters</td>
</tr>
<tr>
<td>COMPSCI 142B</td>
<td>Language Processor Construction</td>
</tr>
<tr>
<td>COMPSCI 143A</td>
<td>Principles of Operating Systems</td>
</tr>
<tr>
<td>COMPSCI 143B</td>
<td>Project in Operating System Organization</td>
</tr>
<tr>
<td>Recommended electives:</td>
<td></td>
</tr>
<tr>
<td>COMPSCI 132</td>
<td>Computer Networks</td>
</tr>
<tr>
<td>COMPSCI 134</td>
<td>Computer and Network Security</td>
</tr>
<tr>
<td>COMPSCI 152</td>
<td>Computer Systems Architecture</td>
</tr>
<tr>
<td>Visual Computing: four courses from the following list:</td>
<td></td>
</tr>
<tr>
<td>COMPSCI 111</td>
<td>Digital Image Processing</td>
</tr>
<tr>
<td>COMPSCI 112</td>
<td>Computer Graphics</td>
</tr>
<tr>
<td>COMPSCI 114</td>
<td>Projects in Advanced 3D Computer Graphics</td>
</tr>
<tr>
<td>COMPSCI 116</td>
<td>Computational Photography and Vision</td>
</tr>
<tr>
<td>COMPSCI 117</td>
<td>Project in Computer Vision</td>
</tr>
<tr>
<td>I&C SCI 162</td>
<td>Modeling and World Building</td>
</tr>
</tbody>
</table>

Sample Program of Study — Computer Science

<table>
<thead>
<tr>
<th>Freshman</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Winter</td>
<td>Spring</td>
</tr>
<tr>
<td>I&C SCI 31</td>
<td>I&C SCI 32</td>
<td>I&C SCI 33</td>
</tr>
<tr>
<td>MATH 2A</td>
<td>MATH 2B</td>
<td>IN4MATX 43</td>
</tr>
<tr>
<td>WRITING 39A</td>
<td>WRITING 39B</td>
<td>I&C SCI 6B</td>
</tr>
<tr>
<td>I&C SCI 90</td>
<td>General Education III</td>
<td>WRITING 39C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Winter</td>
<td>Spring</td>
</tr>
<tr>
<td>I&C SCI 51</td>
<td>I&C SCI 46</td>
<td>Computer Science Spec./Elective</td>
</tr>
<tr>
<td>I&C SCI 6D</td>
<td>I&C SCI 53</td>
<td>STATS 67</td>
</tr>
<tr>
<td>I&C SCI 45C</td>
<td>I&C SCI 53L</td>
<td>General Education III</td>
</tr>
<tr>
<td></td>
<td>I&C SCI 6N</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Winter</td>
<td>Spring</td>
</tr>
<tr>
<td>COMPSCI 161</td>
<td>Computer Science Spec./Elective</td>
<td>Computer Science Spec./Elective</td>
</tr>
<tr>
<td>Science elective</td>
<td>Computer Science Spec./Elective</td>
<td>Computer Science Spec./Elective</td>
</tr>
<tr>
<td>General Education III</td>
<td>I&C SCI 139W</td>
<td>Science Elective</td>
</tr>
<tr>
<td>General Education VII</td>
<td>General Education VIII</td>
<td>General Education VI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Winter</td>
<td>Spring</td>
</tr>
<tr>
<td>Computer Science Spec./Elective</td>
<td>Computer Science Spec./Elective</td>
<td>Computer Science Spec./Elective</td>
</tr>
<tr>
<td>Computer Science Spec./Elective</td>
<td>Computer Science Spec./Elective</td>
<td>Computer Science Spec./Elective</td>
</tr>
<tr>
<td>General Education IV</td>
<td>General Education IV</td>
<td>General Education IV</td>
</tr>
</tbody>
</table>

NOTES:
1. Students are advised that this sample program lists the minimum requirements; it is possible that students may have to take additional courses to prepare for required courses.

2. The lower-division writing requirement must be completed by the end of the seventh quarter at UCI.

3. This is only a sample plan. Course offerings may be moved due to unforeseen circumstances. It is strongly recommended that students meet with an academic advisor to create an academic plan tailored to meet their specific areas of interest.

Undergraduate Major in Computer Science and Engineering (CSE)

This program is administered jointly by the Department of Computer Science in the Bren School of ICS, and the Department of Electrical Engineering and Computer Science (EECS) in The Henry Samueli School of Engineering. For information, see the Interdisciplinary Studies section of the Catalogue.

Requirements for the B.S. in Computer Science and Engineering

All students must meet the University Requirements.

Major Requirements: See the Interdisciplinary Studies section.

Minor in Bioinformatics

The minor provides a focused study of bioinformatics to supplement a student’s major program of study and prepares students for a profession, career, or academic pursuit in which biomedical computing is an integral part but is not the primary focus. The Bioinformatics minor contributes to students’ competence in computing applied to biomedical problems and data, as well as exposing them to the fundamentals of the life sciences from a computer science perspective. The minor allows students sufficient flexibility to pursue courses that complement their major field or address specific interests.

Students who complete the minor requirements will be able to do the following: synthesize computer science, quantitative methods, and biological science; understand the synergistic set of reciprocal influences between life and computational sciences and technologies; discuss biomedical computing problems and corresponding computer science perspectives; and employ principles, methods, and technologies fundamental to biomedical computing.

Requirements for the Minor in Bioinformatics

A. Complete all of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>I&C SCI 31</td>
<td>Introduction to Programming</td>
</tr>
<tr>
<td>I&C SCI 32</td>
<td>Programming with Software Libraries</td>
</tr>
<tr>
<td>I&C SCI 33</td>
<td>Intermediate Programming</td>
</tr>
<tr>
<td>BIO SCI 93</td>
<td>From DNA to Organisms</td>
</tr>
<tr>
<td>COMPSCI 184A</td>
<td>Representations and Algorithms for Molecular Biology</td>
</tr>
<tr>
<td>BIO SCI M123/COMPSCI 183</td>
<td>Introduction to Computational Biology</td>
</tr>
<tr>
<td>COMPSCI 184C</td>
<td>Computational Systems Biology</td>
</tr>
</tbody>
</table>

NOTE: A maximum of two courses may be taken Pass/Not Pass toward a minor. Bren School majors should refer to the Majors/Minors Restrictions Catalogue section before attempting to minor in Bioinformatics. Students who are considering a major in Computer Science or Computer Science and Engineering must complete the major requirements for a letter grade. Visit the ICS Student Affairs Office website for Majors and Minors restrictions (http://www.ics.uci.edu/ugrad/degrees/MajorMinor.Restrictions_Chart.pdf)

Graduate Program in Computer Science

Computer Science encompasses both theoretical and practical aspects of design, analysis, and implementation of computer systems, as well as applications of computing to numerous other fields. Core research areas include: (1) artificial intelligence and machine learning, (2) bioinformatics, (3) computer architecture, (4) embedded systems, (5) graphics and computer vision, (6) database systems and information management, (7) multimedia and gaming, (8) networks and distributed systems, (9) programming languages and compilers, (10) security, privacy, and cryptography, (11) design and analysis of algorithms, and (12) scientific computing.

The M.S. and Ph.D. degrees in Computer Science (CS) are broad and flexible programs, offering students opportunities for in-depth graduate study and cutting-edge research, covering a broad range of topics in Computer Science.

Master of Computer Science

The Master of Computer Science Program prepares students for immediate entry into the technology workforce as well as support students for enhanced job opportunities and mobility. The program emphasizes computer science that applies to a wide variety of applications and industries where students learn or reinforce key computer science concepts through classroom- and project-based learning, and through individual and collaborative assignments.
The program spans four academic quarters—fall, winter, spring, and fall—in addition to a summer component that includes either an internship or additional coursework.

A key feature of the program is the capstone design courses, which are taken simultaneously and include design, development, and professional writing components.

Admissions

Most applicants come from a computing-related undergraduate program; however, applications from students with other technical backgrounds and sufficient preparation in programming are also welcomed. Applications are also encouraged from students with non-technical academic backgrounds who have sufficient preparation in programming and extensive technical employment experience. Any admitted students with any deficiencies in discrete mathematics and data structures are highly recommended to register for community college or online courses prior to entering the program in the fall.

For specific information regarding admissions requirements and the application process, please refer to the Graduate Division website (https://grad.uci.edu).

Requirements

A. Complete three of the following core courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPSCI 222P</td>
<td>Principles of Data Management</td>
</tr>
<tr>
<td>COMPSCI 232P</td>
<td>Computer and Communication Networks</td>
</tr>
<tr>
<td>COMPSCI 238P</td>
<td>Operating Systems</td>
</tr>
<tr>
<td>COMPSCI 250P</td>
<td>Computer Systems Architecture</td>
</tr>
<tr>
<td>COMPSCI 260P</td>
<td>Fundamentals of Algorithms with Applications</td>
</tr>
<tr>
<td>COMPSCI 261P</td>
<td>Data Structures with Applications</td>
</tr>
<tr>
<td>COMPSCI 273P</td>
<td>Machine Learning and Data Mining</td>
</tr>
</tbody>
</table>

B. Complete two capstone courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPSCI 296P</td>
<td>Capstone Professional Writing and Communication for Computer Science</td>
</tr>
<tr>
<td>COMPSCI 297P</td>
<td>Capstone Design Project for Computer Science</td>
</tr>
</tbody>
</table>

C. Select at least six of the following: 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPSCI 201P</td>
<td>Introduction to Computer Security</td>
</tr>
<tr>
<td>COMPSCI 202P</td>
<td>Applied Cryptography</td>
</tr>
<tr>
<td>COMPSCI 203P</td>
<td>Network Security</td>
</tr>
<tr>
<td>COMPSCI 206P</td>
<td>Principles of Scientific Computing</td>
</tr>
<tr>
<td>COMPSCI 210P</td>
<td>Computer Graphics and Visualization</td>
</tr>
<tr>
<td>COMPSCI 211P</td>
<td>Visual Computing</td>
</tr>
<tr>
<td>COMPSCI 222P</td>
<td>Principles of Data Management</td>
</tr>
<tr>
<td>COMPSCI 231P</td>
<td>Parallel and Distributed Computing for Professionals</td>
</tr>
<tr>
<td>COMPSCI 232P</td>
<td>Computer and Communication Networks</td>
</tr>
<tr>
<td>COMPSCI 238P</td>
<td>Operating Systems</td>
</tr>
<tr>
<td>COMPSCI 242P</td>
<td>Compilers and Interpreters</td>
</tr>
<tr>
<td>COMPSCI 244P</td>
<td>Introduction to the Internet of Things</td>
</tr>
<tr>
<td>COMPSCI 250P</td>
<td>Computer Systems Architecture</td>
</tr>
<tr>
<td>COMPSCI 253P</td>
<td>Advanced Programming and Problem Solving</td>
</tr>
<tr>
<td>COMPSCI 260P</td>
<td>Fundamentals of Algorithms with Applications</td>
</tr>
<tr>
<td>COMPSCI 261P</td>
<td>Data Structures with Applications</td>
</tr>
<tr>
<td>COMPSCI 262P</td>
<td>Automata and Grammars</td>
</tr>
<tr>
<td>COMPSCI 267P</td>
<td>Data Compression</td>
</tr>
<tr>
<td>COMPSCI 268P</td>
<td>Introduction to Optimization Modeling</td>
</tr>
<tr>
<td>COMPSCI 271P</td>
<td>Introduction to Artificial Intelligence</td>
</tr>
<tr>
<td>COMPSCI 273P</td>
<td>Machine Learning and Data Mining</td>
</tr>
<tr>
<td>COMPSCI 274P</td>
<td>Neural Networks and Deep Learning</td>
</tr>
</tbody>
</table>

1 Courses completed as core courses in Section A cannot also be counted toward Section C.

All Master of Computer Science students are expected to maintain a minimum GPA of 3.0 throughout the program, with no individual grade lower than a B-. The normative time to degree is four quarters; the maximum time to degree is three years.
Master of Science in Computer Science
The course requirements for the M.S. are identical to those of the Ph.D., although completion plans differ. M.S. students can choose a thesis option that allows them to undertake a research-based thesis in lieu of two elective courses. For general information about admissions, the M.S. completion plan options, visit the Bren School of ICS Graduate Programs section of the Catalogue.

Doctor of Philosophy in Computer Science

Required Courses
Each student must complete at least 47 units of course work with an average GPA of at least 3.5 for Ph.D. students and 3.0 for M.S. students. In addition, students must receive at least a B in each course counted toward filling these requirements. The set of core and elective courses chosen by a student must be approved by the student’s research advisor before advancement to candidacy. Faculty associated with each research area will provide suggested curricula for that area to guide students in their selection of courses. These curricula will also help Ph.D. students to prepare for their candidacy examination (see below) which must be taken in a specific research area.

Students must complete three quarters of COMPSCI 200S, four core courses, and seven elective courses. The course requirements are as follows:

Students must select four areas from the list of seven areas given below. From each area, they must select at least one of the courses listed for that area.

Data Structures and Algorithms

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPSCI 260</td>
<td>Fundamentals of the Design and Analysis of Algorithms</td>
</tr>
<tr>
<td>COMPSCI 261</td>
<td>Data Structures</td>
</tr>
<tr>
<td>COMPSCI 263</td>
<td>Analysis of Algorithms</td>
</tr>
</tbody>
</table>

Architecture/Embedded Systems

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPSCI 250A</td>
<td>Computer Systems Architecture</td>
</tr>
<tr>
<td>COMPSCI 244</td>
<td>Introduction to Embedded and Ubiquitous Systems</td>
</tr>
</tbody>
</table>

System Software

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPSCI 241</td>
<td>Advanced Compiler Construction</td>
</tr>
<tr>
<td>COMPSCI 243</td>
<td>High-Performance Architectures and Their Compilers</td>
</tr>
<tr>
<td>COMPSCI 230</td>
<td>Distributed Computer Systems</td>
</tr>
</tbody>
</table>

Artificial Intelligence

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPSCI 271</td>
<td>Introduction to Artificial Intelligence</td>
</tr>
<tr>
<td>COMPSCI 273A</td>
<td>Machine Learning</td>
</tr>
</tbody>
</table>

Networks/Multimedia

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPSCI 232</td>
<td>Computer and Communication Networks</td>
</tr>
<tr>
<td>COMPSCI 203</td>
<td>Network and Distributed Systems Security</td>
</tr>
<tr>
<td>COMPSCI 212</td>
<td>Multimedia Systems and Applications</td>
</tr>
</tbody>
</table>

Database Systems

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPSCI 222</td>
<td>Principles of Data Management</td>
</tr>
<tr>
<td>COMPSCI 223</td>
<td>Transaction Processing and Distributed Data Management</td>
</tr>
</tbody>
</table>

Scientific and Visual Computing

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPSCI 206</td>
<td>Principles of Scientific Computing</td>
</tr>
<tr>
<td>COMPSCI 211A</td>
<td>Visual Computing</td>
</tr>
</tbody>
</table>

Seven elective courses from any set of CS, Informatics, or Statistics courses, including the above core courses, but excluding COMPSCI 290, COMPSCI 298, COMPSCI 299, or any course with a suffix of “S.”

Two of these courses can be graduate courses offered by a department outside of ICS, with written consent of the advisor (M.S. students must obtain written consent from the Computer Science Vice Chair for Graduate Studies).

Two of the courses can be undergraduate courses from the following list:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPSCI 111</td>
<td>Digital Image Processing</td>
</tr>
<tr>
<td>COMPSCI 112</td>
<td>Computer Graphics</td>
</tr>
<tr>
<td>COMPSCI 122A</td>
<td>Introduction to Data Management</td>
</tr>
<tr>
<td>COMPSCI 132</td>
<td>Computer Networks</td>
</tr>
<tr>
<td>COMPSCI 142A</td>
<td>Compilers and Interpreters</td>
</tr>
</tbody>
</table>
Students may not retake courses they have used toward an undergraduate degree and receive credit toward the graduate requirements.

No more than two undergraduate courses or COMPSCI 295 may be taken to satisfy elective course requirements.

Ph.D. students are required to serve as teaching assistants for at least two quarters.

Research Project for the Ph.D.

Doctoral students must find a faculty advisor and successfully complete a research project with that faculty member by the end of their second year. In coordination with this project the student must also take at least one independent studies course (COMPSCI 299) with their faculty advisor. The objective of the research project is to demonstrate early in the program the student’s ability to carry out basic research in computer science.

Finally, the student must present the outcome of the research in a technical report, which must be approved by the advisor. The project may or may not be a stepping-stone toward a dissertation, and must be completed by the end of the second year, and prior to advancement to candidacy.

Advancement to Candidacy Examination

The objective of the candidacy examination is to demonstrate in-depth knowledge of an area of computer science and readiness to carry out independent research at the doctoral level in that area. The student must complete all pre-candidacy course requirements and the research project prior to advancing to candidacy. All requirements for candidacy including the candidacy examination must be completed by the end of the third year (or, for students entering the program with an M.S. in Computer Science, by the end of the second year). If the student does not pass on the first trial, the student will be allowed until the end of the first quarter of the fourth year to advance to candidacy. Consult the ICS Graduate Office for policies regarding committee membership. The format is an oral examination during which the student is tested on knowledge relevant to the chosen area of specialization. Each area is defined by a set of topics and reading list, which are maintained by the Computer Science Department office. New areas or changes to existing areas must be approved by a majority vote of the CS faculty in accordance with the Department’s bylaws. The current areas include the following: Algorithms and Data Structures; Computer Architecture and Embedded Systems; Database Systems and Multimedia; Computer Networks; Distributed Systems; Artificial Intelligence and Machine Learning; Informatics in Biology and Medicine; Computer Graphics and Visual Computing; Cryptography and Computer Security; Computational Neuroscience; Scientific Computing; Systems Software.

The examination is graded pass or fail. In order to pass, the Candidacy Committee must unanimously approve the final outcome. In the case of a fail, the examination may be retaken once. Students who fail on the second try will be recommended for disqualification from the doctoral program.

Doctoral Dissertation Topic Defense

The student must produce a substantial written document representing the dissertation plan. This must include the proposed dissertation abstract, a dissertation outline, and a detailed plan for completing the work. A dissertation defense committee is formed in accordance with UCI Senate regulations. The dissertation committee must unanimously approve the student’s proposal. At the discretion of the student’s advisor, the student may be required to give an oral presentation of the proposed plan to the committee. This must be completed by the end of the fourth year. It is expected that this will be done at least a year prior to the final examination and before most of the dissertation research and writing are undertaken. The idea is for students to demonstrate that they have a clear plan for carrying out the research for their dissertation. It also gives the student an understanding of what will be expected for final approval of the dissertation.

Doctoral Dissertation and Final Examination

Ph.D. students are required to complete a Ph.D. dissertation in accordance with Academic Senate regulations. In addition, they must pass an oral dissertation defense which consists of a public seminar presenting results followed by a private examination by the doctoral committee and other interested members of the Computer Science Department faculty.

Students entering the Ph.D. program with an M.S. in Computer Science must advance to candidacy within two years. All others must advance within three years. The normative time for completion of the Ph.D. is six years, and the maximum time permitted is seven years.

Graduate Program in Networked Systems (M.S. and Ph.D.)

The graduate program in Networked Systems (NetSys) provides education and research opportunities in the areas of computer networks and communication systems. NetSys is highly interdisciplinary, comprising software, hardware, and communication technology. NetSys involves faculty and
courses from both Computer Science and Electrical Engineering. Details can be found at the NetSys website (http://www.nettedsystems.uci.edu) and in the Interdisciplinary Studies section of the Catalogue.

Graduate Program in Mathematical, Computational, and Systems Biology
The graduate program in Mathematical, Computational, and Systems Biology (MCSB) is designed to meet the interdisciplinary training challenges of modern biology and function in concert with selected department programs, including the Ph.D. in Computer Science. Detailed information is available at the Mathematical, Computational, and Systems Biology website (http://mcsb.uci.edu) and in the Interdisciplinary Studies section of the Catalogue.

Faculty
Shannon L. Alfaro, M.S. University of California, Irvine, Continuing Lecturer of Computer Science (design/analysis of combinational and sequential systems using SSI/MSI/LSI modules, hardware/firmware implementation of algorithms)

Animashree Anandkumar, Ph.D. Cornell University, Assistant Professor of Computer Science (statistical inference and learning of graphical models, scalable network algorithms)

Nader Bagherzadeh, Ph.D. University of Texas at Austin, Professor of Electrical Engineering and Computer Science; Computer Science (parallel processing, computer architecture, computer graphics, memory systems, 3-D ICs, heterogeneous computing, low-power processing)

Pierre F. Baldi, Ph.D. California Institute of Technology, Director of Institute for Genomics and Bioinformatics and Distinguished Professor of Computer Science; Biological Chemistry; Biomedical Engineering; Developmental and Cell Biology; Mathematics (artificial intelligence and machine learning, biomedical informatics, databases and data mining, environmental informatics, statistics and statistical theory)

Lubomir Bic, Ph.D. University of California, Irvine, Professor of Computer Science (parallel and distributed computing, mobile agents, networks, and distributed systems)

Elaheh Bozorgzadeh, Ph.D. University of California, Los Angeles, Professor of Computer Science (computer architecture and design, design automation and synthesis for embedded systems, VLSI CAD, reconfigurable computing)

Anton Burtsev, Ph.D. University of Utah, Assistant Adjunct Professor of Computer Science (novel low-latency datacenters, microkernels, virtualization, datacenter environments)

Michael Carey, Ph.D. University of California, Berkeley, Donald Bren Professor of Information & Computer Sciences and Distinguished Professor of Computer Science (databases and data mining, parallel and distributed systems)

Aparna Chandramowlishwaran, Ph.D. Georgia Institute of Technology, Assistant Professor of Electrical Engineering and Computer Science; Computer Science; Mechanical and Aerospace Engineering (high-performance computing, domain-specific compilers, algorithm-architecture co-design, data analysis, and scientific computing)

Qi Alfred Chen, Ph.D. University of Michigan, Assistant Professor of Computer Science (smart systems and IoT)

Rina Dechter, Ph.D. University of California, Los Angeles, UCI Chancellor's Professor of Computer Science (automated reasoning, knowledge-representation, planning and learning)

Brian C. Demsky, Ph.D. Massachusetts Institute of Technology, Professor of Electrical Engineering and Computer Science; Computer Science (computer security, programming languages, software engineering, computer systems, compilers, distributed systems, internet of things)

Michael B. Dillencourt, Ph.D. University of Maryland, College Park, Professor of Computer Science (algorithms and complexity, networks and distributed systems, data structures, computational geometry, graph algorithms)

Rainer B. Doemer, Ph.D. Dortmund University, Professor of Electrical Engineering and Computer Science; Computer Science (system-level design, embedded computer systems, design methodologies, specification and modeling languages, advanced parallel simulation, integration of hardware and software systems)

Nikil D. Dutt, Ph.D. University of Illinois at Urbana–Champaign, UCI Chancellor's Professor of Computer Science; Cognitive Sciences; Electrical Engineering and Computer Science (embedded systems, computer architecture, electronic design automation, software systems, brain-inspired architectures and computing)

Magda S. El Zarki, Ph.D. Columbia University, Professor of Computer Science; Informatics (telecommunications, networks, wireless communication, video transmission)

David A. Eppstein, Ph.D. Columbia University, UCI Chancellor's Professor of Computer Science (algorithms and complexity; computer graphics and visualization; geometric optimization)
Daniel Epstein, Ph.D. University of Washington, Assistant Professor of Informatics; Computer Science (human-computer interaction, personal informatics, ubiquitous computing, social computing, health informatics)

Julian Feldman, Ph.D. Carnegie Institute of Technology, Professor Emeritus of Computer Science

Charless C. Fowlkes, Ph.D. University of California, Berkeley, Professor of Computer Science; Cognitive Sciences (artificial intelligence, computer vision, machine learning, computational biology)

Michael S. Franz, Ph.D. Swiss Federal Institute of Technology in Zurich, UCI Chancellor’s Professor of Computer Science; Electrical Engineering and Computer Science (systems software, particularly compilers and virtual machines, trustworthy computing, software engineering)

Daniel H. Frost, M.S. University of California, Irvine, Professor of Teaching Emeritus of Computer Science (artificial intelligence, software engineering, computer graphics, teaching of programming)

Richard Futrell, Ph.D. Massachusetts Institute of Technology, Assistant Professor of Computer Science (language processing, Bayesian modeling, NLP)

Sergio Gago-Masague, Ph.D., Assistant Professor of Teaching of Computer Science (pervasive computing, user-centric software design, human computer interaction, serious games)

Irene Gassko, Ph.D. Boston University, Lecturer of Computer Science

Jean-Luc Gaudiot, Ph.D. University of California, Los Angeles, Professor of Electrical Engineering and Computer Science; Computer Science (parallel processing, computer architecture, processor architecture)

Tony D. Givargis, Ph.D. University of California, Riverside, Professor of Computer Science (embedded systems, platform-based system-on-a-chip design, low-power electronics)

Michael T. Goodrich, Ph.D. Purdue University, UCI Chancellor’s Professor of Computer Science (computer security, algorithm design, data structures, Internet algorithms, geometric computing, graphic drawing)

Richard H. Granger, Ph.D. Yale University, Professor Emeritus of Computer Science

Ian G. Harris, Ph.D. University of California, San Diego, Professor of Computer Science; Electrical Engineering and Computer Science (hardware/software covalidation, manufacturing test)

Wayne B. Hayes, Ph.D. University of Toronto, Associate Professor of Computer Science (biomedical informatics and computational biology, computer vision, scientific and numerical computing)

Dan S. Hirschberg, Ph.D. Princeton University, Professor of Computer Science (analyses of algorithms, concrete complexity, data structures, models of computation)

Alexander T. Ihler, Ph.D. Massachusetts Institute of Technology, Associate Professor of Computer Science (artificial intelligence and machine learning, probabilistic models, sensor networks, and distributed systems)

Sandra S. Irani, Ph.D. University of California, Berkeley, Professor of Computer Science (algorithms and complexity)

Ramesh Chandra Jain, Ph.D. Indian Institute of Technology Kharagpur, Donald Bren Professor of Information & Computer Sciences and Distinguished Professor of Computer Science (computer vision, multimedia computing, image databases, machine vision, intelligent systems)

Stanislaw M. Jarecki, Ph.D. Massachusetts Institute of Technology, Professor of Computer Science (algorithms and complexity, applies and distributed cryptograph)

Scott A. Jordan, Ph.D. University of California, Berkeley, Professor of Computer Science; Electrical Engineering and Computer Science (pricing and differentiated services in the Internet, resource allocation in wireless networks, telecommunications policy)

Sang-Woo Jun, Ph.D. Massachusetts Institute of Technology, Assistant Professor of Computer Science (computer systems architecture, hardware acceleration, non-volatile memory)

David G. Kay, J.D. Loyola Marymount University, Professor Emeritus of Teaching of Informatics; Computer Science (computer law, computer science education)

Selim S. Kia, Ph.D. University of California, Irvine, Assistant Professor of Mechanical and Aerospace Engineering; Computer Science (systems and control, decentralized/distributed algorithm design for multi-agent systems, cooperative robotics, cooperative navigation, pedestrian localization, localization in GPS-denied environments)

Dennis F. Kibler, Ph.D. University of California, Irvine, Professor Emeritus of Computer Science (artificial intelligence and machine learning, gene regulation, biological genomes)
Raymond O. Klefstad, Ph.D., University of California, Irvine, Associate Professor of Teaching of Computer Science (embedded systems, networks and distributed systems, programming languages and systems)

Alfred Kobsa, Ph.D., University of Vienna, Professor Emeritus of Informatics; Computer Science (user modeling, human-computer interaction, artificial intelligence, cognitive science, interdisciplinary computer science)

Jeffrey L. Krichmar, Ph.D. George Mason University, Professor of Cognitive Sciences; Computer Science (computational neuroscience, robotics)

Fadi J. Kurdahi, Ph.D. University of Southern California, Director, Center for Embedded Computer Systems and Associate Dean for Graduate and Professional Studies and Professor of Electrical Engineering and Computer Science; Computer Science (embedded and cyber-physical systems, VLSI system design, design automation of digital systems)

Richard H. Lathrop, Ph.D. Massachusetts Institute of Technology, Professor of Computer Science (modeling structure and function, machine learning, intelligent systems and molecular biology, protein structure/function prediction)

Marco Levorato, Ph.D. University of Padua, Assistant Professor of Computer Science; Electrical Engineering and Computer Science (artificial intelligence and machine learning, networks and distributed systems, statistics and statistical theory, stochastic modeling, signal processing)

Chen Li, Ph.D. Stanford University, Professor of Computer Science (databases and text processing, multimedia databases, data integration)

Kwei-Jay Lin, Ph.D. University of Maryland, College Park, Professor of Electrical Engineering and Computer Science; Computer Science (real-time systems, distributed systems, service-oriented computing)

George S. Lueker, Ph.D. Princeton University, Professor Emeritus of Computer Science (algorithms and complexity)

Aditi Majumder, Ph.D. University of North Carolina at Chapel Hill, Professor of Computer Science; Electrical Engineering and Computer Science (novel displays and cameras for computer graphics and visualization, human-computer interaction, applied computer vision)

Stephan Mandt, Ph.D., University of Cologne, Assistant Professor of Computer Science (artificial intelligence and machine learning, probabilistic modeling, Bayesian deep learning, variational inference)

Athina Markopoulou, Ph.D. Stanford University, Department Chair and Associate Professor of Electrical Engineering and Computer Science; Computer Science (networking: including network protocols, network measurement and analysis, mobile systems and mobile data analysis, network security and privacy)

Gopi Meenakshisundaram, Ph.D. University of North Carolina at Chapel Hill, Professor of Computer Science (geometry and topology for computer graphics, image-based rendering, object representation, surface reconstruction, collision detection, virtual reality, telepresence)

Sharad Mehrotra, Ph.D. University of Texas at Austin, Professor of Computer Science (databases and data mining, multimedia computing, networks and distributed systems)

Eric D. Mjolsness, Ph.D. California Institute of Technology, Professor of Computer Science; Mathematics (artificial intelligence and machine learning, biomedical informatics and computational biology, applied mathematics, mathematical biology, modeling languages)

Emre Neftci, Ph.D. University of Zurich, Assistant Professor of Cognitive Sciences; Computer Science (computational neuroscience, neuromorphic engineering, machine learning)

Alexandru Nicolau, Ph.D. Yale University, Department Chair and Professor of Computer Science (architecture, parallel computation, programming languages and compilers)

Marios Papaefthymiou, Ph.D. Massachusetts Institute of Technology, Ted and Janice Smith Family Foundation Dean and Professor of Computer Science (computer architecture and design, networks and distributed systems)

Richard Pattis, M.S. Stanford University, Professor of Teaching of Computer Science; Informatics (MicroWorlds for teaching programming, debugging, computational tools for non-computer scientists)

Amelia C. Regan, Ph.D. University of Texas at Austin, Professor of Computer Science; Civil and Environmental Engineering (algorithm development and complexity, networks and distributed systems, network optimization)

Ardalan Amiri Sani, Ph.D. Rice University, Assistant Professor of Computer Science (involves building efficient, high performance, and reliable systems)

Isaac D. Scherson, Ph.D. Weizmann Institute of Science, Professor of Computer Science; Electrical Engineering and Computer Science (parallel computing architectures, massively parallel systems, parallel algorithms, interconnection networks, performance evaluation)

Babak Shahbaba, Ph.D. University of Toronto, Associate Professor of Statistics; Computer Science
Phillip C-Y Sheu, Ph.D. University of California, Berkeley, Professor of Electrical Engineering and Computer Science; Biomedical Engineering; Computer Science (semantic computing, robotic computing, artificial intelligence, biomedical computing, multimedia computing)

Alice Silverberg, Ph.D. Princeton University, Distinguished Professor of Mathematics; Computer Science (algebra and number theory)

Sameer Singh, Ph.D. University of Massachusetts Amherst, Assistant Professor of Computer Science; Electrical Engineering and Computer Science; Language Science (artificial intelligence and machine learning, databases and data mining, scientific and numerical computing)

Padhraic J. Smyth, Ph.D. California Institute of Technology, Professor of Computer Science; Education; Statistics (artificial intelligence and machine learning, pattern recognition, applied statistics, data mining, information theory)

Mark Steyvers, Ph.D. Indiana University, Professor of Cognitive Sciences; Computer Science; Psychological Science (higher-order cognition, cognitive neuroscience, computational modeling, collective intelligence)

Erik B. Sudderth, Ph.D. Massachusetts Institute of Technology, Associate Professor of Computer Science; Statistics (artificial intelligence and machine learning, computer vision, statistics and statistical theory)

Alexander W. Thornton, B.S. University of California, Irvine, Continuing Lecturer of Computer Science

Gene Y. Tsudik, Ph.D. University of Southern California, UCI Chancellor’s Professor of Computer Science (computer and network security and privacy; applied cryptography)

Kojiro Umezaki, M.A. Dartmouth College, Associate Professor of Music; Computer Science

Vijay Vazirani, Ph.D. University of California, Berkeley, Distinguished Professor of Computer Science (algorithms and complexity, scientific and numerical computing)

Alexander Veldenbaum, Ph.D. University of Illinois at Urbana-Champaign, Professor of Computer Science (computer architecture, embedded systems, compilers, programming languages and systems, database and data mining)

Nalini Venkatasubramanian, Ph.D. University of Illinois at Urbana-Champaign, Professor of Computer Science (multimedia computing, networks and distributed systems, global information infrastructure, multiple resource management services)

Richert Wang, Ph.D. University of California, Irvine, Lecturer of Computer Science

Jennifer Wong-Ma, Ph.D. University of California, Los Angeles, Associate Professor of Teaching of Computer Science (computer architecture and design, embedded systems, hardware intellectual property protection, statistical optimization)

Xiaohui Xie, Ph.D. Massachusetts Institute of Technology, Associate Professor of Computer Science; Developmental and Cell Biology (computational biology, bioinformatics, genomics, neural computation, machine learning)

Xiangmin Xu, Ph.D. Vanderbilt University, Professor of Anatomy and Neurobiology; Biomedical Engineering; Computer Science

Charles S. Zender, Ph.D. University of Colorado Boulder, Professor of Earth System Science; Computer Science

Hong-Kai Zhao, Ph.D. University of California, Los Angeles, Chancellor’s Professor of Mathematics; Computer Science (applied and computational mathematics, inverse problems and imaging)

Shuang Zhao, Ph.D. Cornell University, Assistant Professor of Computer Science (computer graphics with a focus on material appearance modeling and physically-based rendering)

Courses

COMPSCI 103. Advanced Programming and Problem Solving with C++. 4 Units.
Advanced programming language concepts for more complex, higher performance software design. Builds depth of programming skills in C++ as a foundation for upper-division courses and projects. Focuses on strengthening programming, debugging, and problem solving skills.

Prerequisite: I&C SCI 45C

Restriction: School of Info & Computer Sci students have first consideration for enrollment.
COMPSCI 111. Digital Image Processing. 4 Units.
Introduction to the fundamental concepts of digital signal and image processing as applicable in areas such as multimedia, graphics, AI, data mining, databases, vision, or video games. Topics include image representation, space- and frequency-domain transformations, filters, segmentation, and compression.

Prerequisite: (I&C SCI 46 or CSE 46) and I&C SCI 6D and (MATH 3A or I&C SCI 6N). I&C SCI 46 with a grade of C or better. CSE 46 with a grade of C or better. I&C SCI 6D with a grade of C or better. MATH 3A with a grade of C or better. I&C SCI 6N with a grade of C or better

Restriction: School of Info & Computer Sci students have first consideration for enrollment. Computer Science Engineering Majors have first consideration for enrollment.

COMPSCI 112. Computer Graphics. 4 Units.
Introduction to the fundamental principles of 3D computer graphics including polygonal modeling, geometric transformations, visibility algorithms, illumination models, texturing, and rasterization. Use of an independently-learned 3D graphics API to implement these techniques.

Prerequisite: (I&C SCI 33 or CSE 43) and (I&C SCI 45C or CSE 45C) and (MATH 3A or I&C SCI 6N). I&C SCI 33 with a grade of C or better. CSE 43 with a grade of C or better. I&C SCI 45C with a grade of C or better. CSE 45C with a grade of C or better. MATH 3A with a grade of C or better. I&C SCI 6N with a grade of C or better

Restriction: School of Info & Computer Sci students have first consideration for enrollment. Computer Science Engineering Majors have first consideration for enrollment.

COMPSCI 113. Computer Game Development. 4 Units.
Introduction to the principles of interactive 2D and 3D computer game development. Concepts in computer graphics, algorithms, software engineering, art and graphics, music and sound, story analysis, and artificial intelligence are presented and are the basis for student work.

Prerequisite: COMPSCI 112 or COMPSCI 171 or IN4MATX 121 or ART 106B or I&C SCI 163 or I&C SCI 166

Same as IN4MATX 125.

Restriction: School of Info & Computer Sci students have first consideration for enrollment. Computer Science Engineering Majors have first consideration for enrollment.

COMPSCI 114. Projects in Advanced 3D Computer Graphics. 4 Units.
Projects in advanced 3D graphics such as illumination, geometric modeling, visualization, and animation. Topics include physically based and global illumination, solid modeling, curved surfaces, multiresolution modeling, image-based rendering, basic concepts of animation, and scientific visualization.

Prerequisite: COMPSCI 112 and (I&C SCI 45C or CSE 45C). I&C SCI 45C with a grade of C or better. CSE 45C with a grade of C or better.

Recommended: COMPSCI 161 or CSE 161 or COMPSCI 164 or COMPSCI 165.

Restriction: School of Info & Computer Sci students have first consideration for enrollment. Computer Science Engineering Majors have first consideration for enrollment.

COMPSCI 115. Computer Simulation. 4 Units.
Discrete event-driven simulation; continuous system simulation; basic probability as pertaining to input distributions and output analysis; stochastic and deterministic simulation; static and dynamic system simulation.

Prerequisite: I&C SCI 6B and (I&C SCI 6N or MATH 3A) and (STATS 67 or (STATS 7 and STATS 120A)) and I&C SCI 51 and IN4MATX 43. I&C SCI 6B with a grade of C or better. I&C SCI 6N with a grade of C or better. MATH 3A with a grade of C or better. STATS 67 with a grade of C or better. STAT 7 with a grade of C or better. STATS 120A with a grade of C or better. I&C SCI 51 with a grade of C or better. IN4MATX 43 with a grade of C or better

Restriction: School of Info & Computer Sci students have first consideration for enrollment. Computer Science Engineering Majors have first consideration for enrollment.

COMPSCI 116. Computational Photography and Vision. 4 Units.
Introduces the problems of computer vision through the application of computational photography. Specific topics include photo-editing (image warping, compositing, hole filling), panoramic image stitching, and face detection for digital photographs.

Prerequisite: I&C SCI 6D and (MATH 6G or MATH 3A or I&C SCI 6N) and (MATH 6G or MATH 3A or I&C SCI 6N) and (MATH 6B and (I&C SCI 46 or CSE 46)). I&C SCI 6D with a grade of C or better. MATH 6G with a grade of C or better. MATH 3A with a grade of C or better. I&C SCI 6N with a grade of C or better. MATH 6B with a grade of C or better. I&C SCI 46 with a grade of C or better. CSE 46 with a grade of C or better

Restriction: School of Info & Computer Sci students have first consideration for enrollment. Computer Science Engineering Majors have first consideration for enrollment.
COMPSCI 117. Project in Computer Vision. 4 Units.
Students undertake construction of a computer vision system. Topics include automatically building 3D models from photographs, searching photo collections, robot navigation, and human motion tracking.

Prerequisite: I&C SCI 6D and (MATH 3A or I&C SCI 6N) and MATH 2B and (I&C SCI 46 or CSE 46) and (COMPSCI 112 or COMPSCI 116 or COMPSCI 171 or COMPSCI 178). I&C SCI 6D with a grade of C or better. MATH 3A with a grade of C or better. I&C SCI 6N with a grade of C or better. MATH 2B with a grade of C or better. I&C SCI 46 with a grade of C or better. CSE 46 with a grade of C or better.

Restriction: School of Info & Computer Sci students have first consideration for enrollment. Computer Science Engineering Majors have first consideration for enrollment.

COMPSCI 121. Information Retrieval. 4 Units.
An introduction to information retrieval including indexing, retrieval, classifying, and clustering text and multimedia documents.

Prerequisite: (I&C SCI 45C or I&C SCI 45J) and (STATS 7 or STATS 67). I&C SCI 45C with a grade of C or better. I&C SCI 45J with a grade of C or better.

Same as IN4MATX 141.
Restriction: School of Info & Computer Sci students have first consideration for enrollment.

COMPSCI 122A. Introduction to Data Management. 4 Units.
Introduction to the design of databases and the use of database management systems (DBMS) for applications. Topics include entity-relationship modeling for design, relational data model, relational algebra, relational design theory, and Structured Query Language (SQL) programming.

Prerequisite: I&C SCI 33 or CSE 43 or EECS 114. I&C SCI 33 with a grade of C or better. CSE 43 with a grade of C or better.

Same as EECS 116.
Restriction: Computer Science Engineering Majors have first consideration for enrollment. School of Info & Computer Sci students have first consideration for enrollment.

COMPSCI 122B. Project in Databases and Web Applications. 4 Units.
Introduces students to advanced database technologies and Web applications. Topics include database connectivity (ODBC/JDBC), extending databases using stored procedures, database administration, Web servers, Web programming languages (Java servlets, XML, Ajax, and mobile platforms).

Prerequisite: (COMPSCI 122A or EECS 116) and I&C SCI 45J.

Overlaps with COMPSCI 137, IN4MATX 124.
Restriction: School of Info & Computer Sci students have first consideration for enrollment. Computer Science Engineering Majors have first consideration for enrollment.

COMPSCI 122C. Principles of Data Management. 4 Units.
Covers fundamental principles underlying data management systems. Content includes key techniques including storage management, buffer management, record-oriented file system, access methods, query optimization, and query processing.

Prerequisite: COMPSCI 122A and (I&C SCI 53 or COMPSCI 143A).

Restriction: School of Info & Computer Sci students have first consideration for enrollment. Computer Science Engineering Majors have first consideration for enrollment.

Concurrent with COMPSCI 222.

COMPSCI 125. Next Generation Search Systems. 4 Units.
Discusses concepts and techniques related to all aspects of search systems. After considering basic search technology and the state-of-art systems, rapidly developing techniques for multimedia search, local search, event-search, and video-on-demand are explored.

Prerequisite: I&C SCI 31 or CSE 41 or I&C SCI 32A.

Restriction: Upper-division students only. School of Info & Computer Sci students have first consideration for enrollment. Computer Science Engineering Majors have first consideration for enrollment.

Concurrent with COMPSCI 225.
COMPSCI 131. Parallel and Distributed Computing. 4 Units.
Parallel and distributed computer systems. Parallel programming models. Common parallel and distributed programming issues. Specific topics include parallel programming, performance models, coordination and synchronization, consistency and replication, transactions, fault tolerance.
Prerequisite: (I&C SCI 53 and I&C SCI 53L) or COMPSCI 143A
Restriction: School of Info & Computer Sci students have first consideration for enrollment. Computer Science Engineering Majors have first consideration for enrollment.

COMPSCI 132. Computer Networks. 4 Units.
Computer network architectures, protocols, and applications. Internet congestion control, addressing, and routing. Local area networks. Multimedia networking.
Prerequisite: EECS 55 or STATS 67
Same as EECS 148.
Restriction: Computer Engineering Majors have first consideration for enrollment. Computer Science Engineering Majors have first consideration for enrollment.

COMPSCI 133. Advanced Computer Networks. 4 Units.
Fundamental principles in computer networks are applied to obtain practical experience and skills necessary for designing and implementing computer networks, protocols, and network applications. Various network design techniques, simulation techniques, and UNIX network programming are covered.
Prerequisite: COMPSCI 132 or EECS 148
Restriction: School of Info & Computer Sci students have first consideration for enrollment. Computer Science Engineering Majors have first consideration for enrollment.

COMPSCI 134. Computer and Network Security. 4 Units.
Overview of modern computer and networks security, attacks, and countermeasures. Authentication, identification, data secrecy, data integrity, authorization, access control, computer viruses, network security. Also covers secure e-commerce and applications of public key methods, digital certificates, and credentials.
Prerequisite: I&C SCI 6D and (I&C SCI 33 or CSE 43) and (COMPSCI 122A or EECS 116 or COMPSCI 132 or COMPSCI 143A)
Restriction: School of Info & Computer Sci students have first consideration for enrollment. Computer Science Engineering Majors have first consideration for enrollment.

COMPSCI 137. Internet Applications Engineering. 4 Units.
Concepts in Internet applications engineering with emphasis on the Web. Peer-to-Peer and Interoperability. Topics include HTTP and REST, Remote Procedure/Method Calls, Web Services, data representations, content distribution networks, identity management, relevant W3C/IETF standards, and relevant new large-scale computing styles.
Prerequisite: (COMPSCI 132 or EECS 148) and I&C SCI 45J
Same as IN4MATX 124.
Overlaps with COMPSCI 122B.
Restriction: Upper-division students only. School of Info & Computer Sci students have first consideration for enrollment. Computer Science Engineering Majors have first consideration for enrollment.

COMPSCI 141. Concepts in Programming Languages I. 4 Units.
In-depth study of several contemporary programming languages stressing variety in data structures, operations, notation, and control. Examination of different programming paradigms, such as logic programming, functional programming and object-oriented programming; implementation strategies, programming environments, and programming style.
Prerequisite: (I&C SCI 51 or CSE 31 or EECS 31) and (I&C SCI 46 or CSE 46). I&C SCI 51 with a grade of C or better. CSE 31 with a grade of C or better. EECS 31 with a grade of C or better. I&C SCI 46 with a grade of C or better. CSE 46 with a grade of C or better
Same as IN4MATX 101.
Restriction: School of Info & Computer Sci students have first consideration for enrollment. Computer Science Engineering Majors have first consideration for enrollment.
COMPSCI 142A. Compilers and Interpreters. 4 Units.
Introduction to the theory of programming language processors covering lexical analysis, syntax analysis, semantic analysis, intermediate representations, code generation, optimization, interpretation, and run-time support.
Prerequisite: CSE 141 or COMPSCI 141 or IN4MATX 101
Restriction: School of Info & Computer Sci students have first consideration for enrollment. Computer Science Engineering Majors have first consideration for enrollment.

COMPSCI 142B. Language Processor Construction. 4 Units.
Project course which provides working laboratory experience in construction and behavior of compilers and interpreters. Students build actual language processors and perform experiments which reveal their behaviors.
Prerequisite: COMPSCI 142A or CSE 142
Restriction: School of Info & Computer Sci students have first consideration for enrollment. Computer Science Engineering Majors have first consideration for enrollment.

COMPSCI 143A. Principles of Operating Systems. 4 Units.
Principles and concepts of process and resource management, especially as seen in operating systems. Processes, memory management, protection, scheduling, file systems, and I/O systems are covered. Concepts illustrated in the context of several well-known systems.
Prerequisite: (I&C SCI 46 or CSE 46) and (I&C SCI 51 or EECS 31 or CSE 31)
Overlaps with EECS 111.
Restriction: School of Info & Computer Sci students have first consideration for enrollment. Computer Science Engineering Majors have first consideration for enrollment.

COMPSCI 143B. Project in Operating System Organization. 4 Units.
Detailed specification and design of critical components of an actual operating system including a memory manager, a process server, and a file/I/O subsystem. Hardware/software tradeoffs. Emphasis on logical organization of system and communication.
Prerequisite: COMPSCI 143A
Restriction: School of Info & Computer Sci students have first consideration for enrollment. Computer Science Engineering Majors have first consideration for enrollment.

COMPSCI 145. Embedded Software. 4 Units.
Principles of embedded computing systems: embedded systems architecture, hardware/software components, system software and interfacing, real-time operating systems, hardware/software co-development, and communication issues. Examples of embedded computing in real-world application domains. Simple programming using an embedded systems development environment.
Corequisite: COMPSCI 145L
Prerequisite: (CSE 46 or I&C SCI 46) and (I&C SCI 51 or CSE 132 or EECS 112)
Restriction: School of Info & Computer Sci students have first consideration for enrollment. Computer Science Engineering Majors have first consideration for enrollment.

COMPSCI 145L. Embedded Software Laboratory. 2 Units.
Laboratory section to accompany COMPSCI 145.
Corequisite: COMPSCI 145
Restriction: School of Info & Computer Sci students have first consideration for enrollment. Computer Science Engineering Majors have first consideration for enrollment.

COMPSCI 146. Programming in Multitasking Operating Systems. 4 Units.
User- and systems-level programming of modern Internet-connected, multi-user, multitasking operating systems. Shells, scripting, filters, pipelines, programmability, extensibility, concurrency, inter-process communication. Concrete examples of a modern operating system (such as, but not necessarily, Unix programmed in C) are used.
Prerequisite: (I&C SCI 46 or CSE 46) and I&C SCI 51. I&C SCI 46 with a grade of C or better. CSE 46 with a grade of C or better. I&C SCI 51 with a grade of C or better. Recommended: COMPSCI 143A.
Restriction: School of Info & Computer Sci students have first consideration for enrollment. Computer Science Engineering Majors have first consideration for enrollment.
COMPSCI 147. Internet of Things (IoT) Software and Systems. 4 Units.
Introduction to the Internet of Things (IoT) from a systems and software perspective. IoT ecosystem including sensors, embedded CPUs, networking protocols, software, cloud services, and security and privacy requirements. IoT use cases, system design and programming project.

Prerequisite: I&C SCI 33

Restriction: School of Info & Computer Sci students have first consideration for enrollment. Computer Science Engineering Majors have first consideration for enrollment.

COMPSCI 151. Digital Logic Design. 4 Units.

Prerequisite: (I&C SCI 33 or CSE 43) and I&C SCI 51 and I&C SCI 6B and I&C SCI 6D. I&C SCI 33 with a grade of C or better. CSE 43 with a grade of C or better. I&C SCI 51 with a grade of C or better

Restriction: School of Info & Computer Sci students have first consideration for enrollment. Computer Science Engineering Majors have first consideration for enrollment.

COMPSCI 152. Computer Systems Architecture. 4 Units.
Design of computer elements; ALU, control unit, and arithmetic circuits. Memory hierarchy and organization. Caches. Function unit sharing and pipelining. I/O and interrupt processing. RTL and behavioral modeling using hardware description languages. Microprocessor organization and implementation techniques.

Prerequisite: COMPSCI 151

Overlaps with I&C SCI 160, EECS 112.

Restriction: School of Info & Computer Sci students have first consideration for enrollment. Computer Science Engineering Majors have first consideration for enrollment.

COMPSCI 153. Logic Design Laboratory. 4 Units.
Introduction to standard integrated circuits. Construction and debugging techniques. Design of digital systems using LSI and MSI components. Practical use of circuits in a laboratory environment, including implementation of small digital systems such as arithmetic modules, displays, and timers.

Prerequisite: COMPSCI 151

Restriction: School of Info & Computer Sci students have first consideration for enrollment. Computer Science Engineering Majors have first consideration for enrollment.

COMPSCI 154. Computer Design Laboratory. 4 Units.
Underlying primitives of computer instruction sets. Principles of microprogramming. Microprogramming. Microprograms written for one or more systems. Typical microprogramming applications discussed and implemented or simulated.

Prerequisite or corequisite: COMPSCI 151

Restriction: School of Info & Computer Sci students have first consideration for enrollment. Computer Science Engineering Majors have first consideration for enrollment.

COMPSCI 161. Design and Analysis of Algorithms. 4 Units.
Techniques for efficient algorithm design, including divide-and-conquer and dynamic programming, and time/space analysis. Fast algorithms for problems applicable to networks, computer games, and scientific computing, such as sorting, shortest paths, minimum spanning trees, network flow, and pattern matching.

Prerequisite: (I&C SCI 46 or CSE 46) and I&C SCI 6B and I&C SCI 6D and MATH 2B. I&C SCI 46 with a grade of C or better. CSE 46 with a grade of C or better

Restriction: School of Info & Computer Sci students have first consideration for enrollment. Computer Science Engineering Majors have first consideration for enrollment.
COMPSCI 162. Formal Languages and Automata. 4 Units.
Formal aspects of describing and recognizing languages by grammars and automata. Parsing regular and context-free languages. Ambiguity, nondeterminism. Elements of computability; Turning machines, random access machines, undecidable problems, NP-completeness.
Prerequisite: (I&C SCI 46 or CSE 46) and MATH 2A and MATH 2B and I&C SCI 6B and I&C SCI 6D. I&C SCI 46 with a grade of C or better. CSE 46 with a grade of C or better.
Same as LSCI 102.
Restriction: School of Info & Computer Sci students have first consideration for enrollment. Cognitive Sciences Majors have first consideration for enrollment. Language Science Majors have first consideration for enrollment. Computer Science Engineering Majors have first consideration for enrollment.

COMPSCI 163. Graph Algorithms. 4 Units.
Algorithms for solving fundamental problems in graph theory. Graph representations, graph traversal, network flow, connectivity, graph layout, matching problems.
Prerequisite: COMPSCI 161 or CSE 161
Restriction: School of Info & Computer Sci students have first consideration for enrollment. Computer Science Engineering Majors have first consideration for enrollment.
Concurrent with COMPSCI 265.

COMPSCI 164. Computational Geometry and Geometric Modeling. 4 Units.
Algorithms and data structures for computational geometry and geometric modeling, with applications to game and graphics programming. Topics: convex hulls, Voronoi diagrams, algorithms for triangulation, motion planning, and data structures for geometric searching and modeling of 2D and 3D objects.
Prerequisite: I&C SCI 46 or CSE 46. I&C SCI 46 with a grade of C or better. CSE 46 with a grade of C or better
Restriction: School of Info & Computer Sci students have first consideration for enrollment. Computer Science Engineering Majors have first consideration for enrollment.

COMPSCI 165. Project In Algorithms And Data Structures. 4 Units.
Design, implementation, execution, and analysis of algorithms for problems such as sorting, searching, data compression, and data encryption. Time-space-structure trade-offs.
Prerequisite: COMPSCI 161 or CSE 161. Recommended: I&C SCI 45C OR CSE 45C.

COMPSCI 167. Introduction to Applied Cryptography. 4 Units.
An introduction to the essential aspects of applied cryptography, as it is used in practice. Topics include classical cryptography, block ciphers, stream ciphers, public-key cryptography, digital signatures, one-way hash functions, basic cryptographic protocols, and digital certificates and credentials.
Prerequisite: COMPSCI 161 or CSE 161
Restriction: Upper-division students only. School of Info & Computer Sci students have first consideration for enrollment. Computer Science Engineering Majors have first consideration for enrollment.

COMPSCI 169. Introduction to Optimization. 4 Units.
Prerequisite: (I&C SCI 6N or MATH 3A) and (STATS 67 or (STATS 7 and STATS 120A))
Restriction: School of Info & Computer Sci students have first consideration for enrollment. Computer Science Engineering Majors have first consideration for enrollment.
Concurrent with COMPSCI 268.
COMPSCI 171. Introduction to Artificial Intelligence. 4 Units.
Different means of representing knowledge and uses of representations in heuristic problem solving. Representations considered include predicate logic, semantic nets, procedural representations, natural language grammars, and search trees.

Prerequisite or corequisite: (STATS 7 and STATS 120A) or STATS 67 and (I&C SCI 46 or CSE 46) and MATH 2B

Restriction: School of Info & Computer Sci students have first consideration for enrollment. Computer Science Engineering Majors have first consideration for enrollment.

COMPSCI 172B. Neural Networks and Deep Learning. 4 Units.
Neural network and deep learning from multiple perspectives. Theory of parallel distributed processing systems, algorithmic approaches for learning from data in various manners, applications to difficult problems in AI from computer vision, to natural language understanding, to bioinformatics and chemoinformatics.

Prerequisite: (STATS 120A and STATS 120B) or MATH 121A or COMPSCI 178 or COMPSCI 273A

Restriction: School of Info & Computer Sci students have first consideration for enrollment. Computer Science Engineering Majors have first consideration for enrollment.

 Concurrent with COMPSCI 274C.

COMPSCI 175. Project in Artificial Intelligence. 4 Units.
Construction of a working artificial intelligence system. Evaluation of capabilities of the system including impact of knowledge representation.

Prerequisite: COMPSCI 171 and COMPSCI 178

Restriction: School of Info & Computer Sci students have first consideration for enrollment. Computer Science Engineering Majors have first consideration for enrollment.

COMPSCI 177. Applications of Probability in Computer Science. 4 Units.
Application of probability to real-world problems in computer science. Typical topics include analysis of algorithms and graphs, probabilistic language models, network traffic modeling, data compression, and reliability modeling.

Prerequisite: MATH 2B and STATS 67 and I&C SCI 6B and I&C SCI 6D and (MATH 3A or I&C SCI 6N)

Restriction: School of Info & Computer Sci students have first consideration for enrollment. Computer Science Engineering Majors have first consideration for enrollment.

COMPSCI 178. Machine Learning and Data-Mining. 4 Units.
Introduction to principles of machine learning and data-mining applied to real-world datasets. Typical applications include spam filtering, object recognition, and credit scoring.

Prerequisite: I&C SCI 6B and I&C SCI 6D and (I&C SCI 6N or MATH 3A) and MATH 2B and (STATS 67 or (STATS 7 and STATS 120A))

Restriction: School of Info & Computer Sci students have first consideration for enrollment. Computer Science Engineering Majors have first consideration for enrollment.

COMPSCI 179. Algorithms for Probabilistic and Deterministic Graphical Models. 4 Units.
Graphical model techniques dealing with probabilistic and deterministic knowledge representations. Focuses on graphical models such as constraint networks, Bayesian networks, and Markov networks that have become a central paradigm for knowledge representation and reasoning in AI and general computer science.

Prerequisite: COMPSCI 171

Restriction: School of Info & Computer Sci students have first consideration for enrollment. Computer Science Engineering Majors have first consideration for enrollment.

COMPSCI 183. Introduction to Computational Biology. 4 Units.

Prerequisite: MATH 2D or MATH 3A or STATS 7 or STATS 8

Same as BME 132, BIO SCI M123.

Concurrent with MOL BIO 223 and BME 232.
COMPSCI 184A. Representations and Algorithms for Molecular Biology. 4 Units.
Introduction to computational methods in molecular biology, aimed at those interested in learning about this interdisciplinary area. Covers computational approaches to understanding and predicting the structure, function, interactions, and evolution of DNA, RNA, proteins, and related molecules and processes.
Prerequisite: I&C SCI 6N or MATH 3A
Restriction: Upper-division students only. School of Info & Computer Sci students have first consideration for enrollment. Computer Science Engineering Majors have first consideration for enrollment.
Concurrent with COMPSCI 284A.

COMPSCI 184C. Computational Systems Biology. 4 Units.
Prerequisite: COMPSCI 184A
Restriction: School of Info & Computer Sci students have first consideration for enrollment. Computer Science Engineering Majors have first consideration for enrollment.
Concurrent with COMPSCI 284C.

COMPSCI 190. Special Topics in Information and Computer Science. 4 Units.
Studies in selected areas of Information and Computer Science. Topics addressed vary each quarter.
Prerequisite: Prerequisites vary.
Repeatability: Unlimited as topics vary.
Restriction: School of Info & Computer Sci students have first consideration for enrollment.

COMPSCI H198. Honors Research. 4 Units.
Directed independent research in computer science for honors students.
Prerequisite: Satisfactory completion of the Lower-Division Writing requirement.
Repeatability: May be repeated for credit unlimited times.
Restriction: Campuswide Honors Collegium students only. Bren School of ICS Honors students only. Upper-division students only.

COMPSCI 199. Individual Study. 2-5 Units.
Individual research or investigation with Computer Science faculty.
Repeatability: May be repeated for credit unlimited times.

COMPSCI 200S. Seminar in Computer Science Research. 1 Unit.
Graduate colloquium series. Includes weekly talks by notable computer scientists.
Grading Option: Satisfactory/unsatisfactory only.
Repeatability: May be repeated for credit unlimited times.

COMPSCI 201. Foundations of Cryptographic Protocols. 4 Units.
Explores fundamental cryptographic tools, including encryption, signatures, and identification schemes. Students are introduced to the provable security paradigm of modern cryptography, focusing on understanding of security properties provided by cryptographic tools, and on proving security (or insecurity) of cryptographic constructions.
Prerequisite: COMPSCI 260 or COMPSCI 263

COMPSCI 201P. Introduction to Computer Security. 4 Units.
Introduction to computer security, including systems, technology, and management. Topics include authorization, authentication, data integrity, malware, operating systems security, network security, web security, and basic cryptography.
Prerequisite: Knowledge of Python or C++ programming is required.
Restriction: Master of Computer Science Degree students only. Graduate students only.
COMPSCI 202. Applied Cryptography. 4 Units.
Design and analysis of algorithms for applied cryptography. Topics include symmetric and asymmetric key encryption, digital signatures, one-way hash functions, digital certificates and credentials, and techniques for authorization, non-repudiation, authentication, identification, data integrity, proofs of knowledge, and access control.
Prerequisite: COMPSCI 260 and COMPSCI 263

COMPSCI 202P. Applied Cryptography. 4 Units.
Design and analysis of algorithms for applied cryptography. Topics include symmetric and asymmetric key encryption, digital signatures, one-way hash functions, digital certificates and credentials, and techniques for authorization, non-repudiation, authentication, identification, data integrity, proofs of knowledge, and access control.
Restriction: Graduate students only.

COMPSCI 203. Network and Distributed Systems Security. 4 Units.
Modern computer and networks security: attacks and countermeasures, authentication, identification, data secrecy, data integrity, authorization, access control, computer viruses, network security. Group communication and multicast security techniques. Covers secure e-commerce and applications of public key methods, digital certificates, and credentials.
Prerequisite: EECS 148 or COMPSCI 132

COMPSCI 203P. Network Security. 4 Units.
Introduction to network security, including network threats and attacks, as well as defenses against such attacks. Topics include network infrastructure security, mobile and Wi-Fi security, spam, phishing, firewalls, anonymity, secure email, secure and private cloud computing, and web security.
Prerequisite: COMPSCI 201P or COMPSCI 202P
Restriction: Master of Computer Science Degree students only. Graduate students only.

COMPSCI 204. Usable Security and Privacy. 4 Units.
Introduces usability problems in security and privacy methods, tools, and software. Overviews prominent examples of both failures and successes in usable security and privacy. Surveys state-of-the-art techniques and evaluation methodologies.
Same as IN4MATX 237.
Overlaps with IN4MATX 231, COMPSCI 203.
Restriction: Informatics Majors have first consideration for enrollment. Computer Science Majors have first consideration for enrollment. Undergraduate degree in Comp sci or Informatics is strongly recommended.

COMPSCI 206. Principles of Scientific Computing. 4 Units.
Overview of widely used principles and methods of numerical and scientific computing, including basic concepts and computational methods in linear algebra, optimization, and probability.
Prerequisite: Basic courses in multivariate calculus, linear algebra, and probability.
Overlaps with STATS 230.

COMPSCI 206P. Principles of Scientific Computing. 4 Units.
Overview of widely used principles and methods of numerical and scientific computing, including basic concepts and computational methods in floating-point, linear algebra, optimization, simulation, modeling, and probability/statistics as it relates to model evaluation.
Prerequisite: Basic knowledge of multivariate calculus, linear algebra, and familiarity with MATLAB.
Restriction: Graduate students only.

COMPSCI 210P. Computer Graphics and Visualization. 4 Units.
Interactive 3D graphics rendering pipeline, illumination and shading, ray tracing, texture-, bump-, mip-mapping, hidden surface removal, anti-aliasing, multiresolution representations, volume rendering techniques, iso-surface extraction.
Prerequisite: Familiarity with linear algebra is required.
Restriction: Master of Computer Science Degree students only. Graduate students only.
COMPSCI 211A. Visual Computing. 4 Units.
Fundamentals of image processing (convolution, linear filters, spectral analysis), vision geometry (projective geometry, camera models and calibration, stereo reconstruction), radiometry (color, shading, illumination, BRDF), and visual content synthesis (graphics pipeline, texture- bump-, mip-mapping, hidden surface removal, anti-aliasing).

COMPSCI 211B. Computer Graphics and Visualization. 4 Units.
Interactive 3D graphics rendering pipeline, illumination and shading, ray tracing, texture-, bump-, mip-mapping, hidden surface removal, anti-aliasing, multiresolution representations, volume rendering techniques, iso-surface extraction.

Prerequisite: COMPSCI 211A

COMPSCI 211P. Visual Computing. 4 Units.
Develops a comprehensive understanding of fundamentals of image processing (convolution, linear filters, spectral analysis), vision geometry (projective geometry, camera models and calibration, stereo reconstruction), radiometry (color, shading, illumination, BRDF), visual content synthesis (graphics pipeline, texture- bump-, mip-mapping, hidden surface, anti-aliasing).

Prerequisite: Undergraduate-level familiarity with Linear algebra (matrices and operations), eigenvalue, eigenvectors, linear regression; basic of algorithms; programming in C/C++

Restriction: Graduate students only.

COMPSCI 212. Multimedia Systems and Applications. 4 Units.
Organization and structure of modern multimedia systems; audio and video encoding/compression; quality of service concepts; scheduling algorithms for multimedia; resource management in distributed and multimedia systems; multimedia protocols over high-speed networks; synchronization schemes; multimedia applications; and teleservices.

Prerequisite: COMPSCI 143A and COMPSCI 161. B.S. degree in Computer Science is also accepted. Recommended: COMPSCI 131 and COMPSCI 132 and COMPSCI 133.

COMPSCI 213. Introduction to Visual Perception. 4 Units.
Introduction to the process of human visual perception. Offers the physiological and psychophysical approach to understand vision, introducing concepts of perception of color, depth, movement. Examples of quantification and application of these models in computer vision, computer graphics, multimedia, HCI.

Prerequisite: MATH 121A

COMPSCI 216. Image Understanding. 4 Units.
The goal of image understanding is to extract useful semantic information from image data. Course covers low-level image and video processing techniques, feature descriptors, segmentation, objection recognition, and tracking.

Prerequisite: I&C SCI 6D and (I&C SCI 6N or MATH 6G or MATH 3A) and MATH 2B and I&C SCI 46

COMPSCI 217. Light and Geometry in Computer Vision. 4 Units.
Examines the issues of light transport and multiview geometry in computer vision. Applications include camera calibration, 3D understanding, stereo reconstruction, and illumination estimation.

Prerequisite: I&C SCI 6D and (I&C SCI 6N or MATH 6G or MATH 3A) and MATH 2B and I&C SCI 46 and COMPSCI 211A

COMPSCI 221. Information Retrieval, Filtering, and Classification. 4 Units.
Algorithms for the storage, retrieval, filtering, and classification of textual and multimedia data. The vector space model, Boolean and probabilistic queries, and relevance feedback. Latent semantic indexing; collaborative filtering; and relationship to machine learning methods.

Prerequisite: COMPSCI 161 and COMPSCI 171 and (I&C SCI 6N or MATH 3A or MATH 6G)

Same as SWE 225.

Restriction: Graduate students only.

COMPSCI 222. Principles of Data Management. 4 Units.
Covers fundamental principles underlying data management systems. Content includes key techniques including storage management, buffer management, record-oriented file system, access methods, query optimization, and query processing.

Prerequisite: COMPSCI 122A and (I&C SCI 53 or COMPSCI 143A)

Concurrent with COMPSCI 122C.
COMPSCI 222P. Principles of Data Management. 4 Units.
Covers fundamental principles underlying data management systems. Understanding and implementation of key techniques including storage management, buffer management, record-oriented file system, access methods, query optimization, and query processing.

Prerequisite: C++ programming skills, understanding of Data Structures and Algorithms

Restriction: Graduate students only.

COMPSCI 223. Transaction Processing and Distributed Data Management. 4 Units.
Covers fundamental principles underlying transaction processing including database consistency, concurrency control, database recovery, and fault-tolerance. Includes transaction processing in centralized, distributed, parallel, and client-server environments.

Prerequisite: COMPSCI 222 and COMPSCI 131

COMPSCI 225. Next Generation Search Systems. 4 Units.
Discusses concepts and techniques related to all aspects of search systems. After considering basic search technology and the state-of-art systems, rapidly developing techniques for multimedia search, local search, event-search, and video-on-demand are explored.

Prerequisite: I&C SCI 21 or CSE 21 or IN4MATX 41 or I&C SCI 31 or CSE 41

Restriction: Upper-division students only. Graduate students only.

Concurrent with COMPSCI 125.

COMPSCI 230. Distributed Computer Systems. 4 Units.
Principles of distributed computing systems. Topics covered include message-passing, remote procedure calls, distributed shared memory synchronization, resource and process/thread management, distributed file systems, naming and security.

COMPSCI 231P. Parallel and Distributed Computing for Professionals . 4 Units.
Covers a wide variety of concepts related to the design and application of high-performance concurrent computing systems, including architectural features, communications networks and models, parallel program development for numerical and non-numerical applications, programming models, and more.

Restriction: Master of Computer Science Degree students only. Graduate students only.

COMPSCI 232. Computer and Communication Networks. 4 Units.

Prerequisite: EECS 148 or COMPSCI 132

Same as EECS 248A, NET SYS 201.

Restriction: Graduate students only.

COMPSCI 232P. Computer and Communication Networks . 4 Units.
Internet architecture, protocols, and services. Advanced concepts of IP and TCP, including addressing, internetworking, forwarding, routing, and implementations of flow and congestion control. Internet services such as Network Address Translation and Domain Name Servers. Overview of Local Area Networks.

Restriction: Graduate students only.

COMPSCI 233. Networking Laboratory. 4 Units.
A laboratory-based introduction to basic networking concepts such as addressing, sub-netting, bridging, ARP, and routing. Network simulation and design. Structured around weekly readings and laboratory assignments.

Prerequisite: EECS 148 or COMPSCI 132

Same as NET SYS 202.
COMPSCI 234. Advanced Networks. 4 Units.
Design principles of networked systems, advanced routing and congestion control algorithms, network algorithms, network measurement, management, security, Internet economics, and emerging networks.

Prerequisite: NET SYS 201 or COMPSCI 232 or EECS 248A

Same as NET SYS 210.

COMPSCI 236. Wireless and Mobile Networking. 4 Units.
Introduction to wireless networking. The focus is on layers 2 and 3 of the OSI reference model, design, performance analysis, and protocols. Topics covered include: an introduction to wireless networking, digital cellular, next generation cellular, wireless LANs, and mobile IP.

Prerequisite: EECS 148 or COMPSCI 132

Same as NET SYS 230.

COMPSCI 237. Middleware for Networked and Distributed Systems. 4 Units.
Discusses concepts, techniques, and issues in developing distributed systems middleware that provides high performance and Quality of Service for emerging applications. Also covers existing standards (e.g., CORBA, DCOM, Jini, Espeak) and their relative advantages and shortcomings.

Prerequisite: An undergraduate-level course in operating systems and networks.

Same as NET SYS 260.

COMPSCI 238. Advanced Operating Systems. 4 Units.
Focuses on advanced and graduate-level topics in operating systems. Presents important recent developments in operating systems, topics not covered in undergraduate operating systems courses. This includes novel operating system designs and techniques to improve existing ones.

Prerequisite: COMPSCI 143A

COMPSCI 238P. Operating Systems. 4 Units.
In-depth organization of the core operating system abstraction and its implementation (virtual memory, kernel and user mode, system calls, threads, context switches, interrupts, inter-process communication, hardware interface, etc.) and a range of recent developments in de-facto industry standard operating systems.

Prerequisite: Working knowledge of C and the Linux environment.

Restriction: School of Info & Computer Sci students only. Master of Computer Science Degree students only. Graduate students only.

COMPSCI 241. Advanced Compiler Construction. 4 Units.
Advanced study of programming language implementation techniques: optimizations such as common sub-expression elimination, register allocation, and instruction scheduling. Implementation of language features such as type-directed dispatch, garbage collection, dynamic linking, and just-in-time code generation.

Prerequisite: COMPSCI 142A

COMPSCI 242. Parallel Computing. 4 Units.

COMPSCI 242P. Compilers and Interpreters. 4 Units.
Provides in-depth study of compilers and interpreters which are the primary forms of programming language processing in computing.

Prerequisite: Knowledge of C++ programming is required.

Restriction: Master of Computer Science Degree students only. Graduate students only.

COMPSCI 243. High-Performance Architectures and Their Compilers. 4 Units.
Emphasis on the development of automatic tools (i.e., compilers/environments) for the efficient exploitation of parallel machines, and the trade-offs between hardware and software in the design of supercomputing and high-performance machines.
COMPSCI 244. Introduction to Embedded and Ubiquitous Systems. 4 Units.
Embedded and ubiquitous system technologies including processors, DSP, memory, and software. System interfacing basics; communication strategies; sensors and actuators, mobile and wireless technology. Using pre-designed hardware and software components. Design case studies in wireless, multimedia, and/or networking domains.

Prerequisite: I&C SCI 51 and COMPSCI 152 and COMPSCI 161 and (I&C SCI 6N or MATH 3A or MATH 6G or I&C SCI 6D). B.S. degree in Computer Science is also accepted.

Same as IN4MATX 244.

COMPSCI 244P. Introduction to the Internet of Things. 4 Units.
Develops a comprehensive understanding of the hardware and software technology, the communication protocols, and the security and privacy requirements underlying the Internet of Things ecosystem, particularly those using computing elements (processors, DSPs/ASIPs), sensors, and accessing cloud services.

Prerequisite: Undergraduate-level familiarity with fundamentals of integrated circuit blocks, processors, optimization/algorithm design, and some programming experience.

Restriction: Graduate students only.

COMPSCI 245. Software for Embedded Systems. 4 Units.

Prerequisite: I&C SCI 51 and COMPSCI 152 and COMPSCI 161 and (I&C SCI 6N or MATH 3A or MATH 6G or I&C SCI 6D). B.S. degree in Computer Science is also accepted.

COMPSCI 246. Dependability, Validation, and Testing of Embedded Systems. 4 Units.

Prerequisite: B.S. degree in Computer Science or basic courses in algorithms and data structures, calculus, discrete math, linear algebra, symbolic logic.

COMPSCI 248A. Introduction to Ubiquitous Computing. 4 Units.
The "disappearing computer" paradigm. Differences to the desktop computing model: applications, interaction in augmented environments, security, alternate media, small operating systems, sensors, and embedded systems design. Evaluation by project work and class participation.

Same as IN4MATX 241.

COMPSCI 248B. Ubiquitous Computing and Interaction. 4 Units.
Principles and design techniques for ubiquitous computing applications. Conceptual basis for tangible and embodied interaction. Interaction in virtual and augmented environments. Design methods and techniques. Design case studies. Examination by project work.

Prerequisite: IN4MATX 231 and IN4MATX 241

Same as IN4MATX 242.

COMPSCI 250A. Computer Systems Architecture. 4 Units.
Study of architectural issues and their relation to technology and software: design of processor, interconnections, and memory hierarchies.

Prerequisite: COMPSCI 152

COMPSCI 250B. Modern Microprocessors. 4 Units.
Fundamental concepts and recent advances in computer architecture necessary to understand and use modern microprocessors. Topics span out-of-order execution, multiple instruction issue, control/data speculation, predication, advanced cache and DRAM organizations, embedded systems, DSP and multi-media instructions.

Prerequisite: COMPSCI 250A

Overlaps with COMPSCI 243.
COMPSCI 250P. Computer Systems Architecture. 4 Units.
Study of architectural issues and their relation to technology and software: design of processor, interconnections, and memory hierarchies.

Prerequisite: Undergraduate-level familiarity with fundamentals of integrated circuit blocks, processors, and optimization/algorithm design, and some programming experience.

Restriction: Graduate students only.

COMPSCI 252. Introduction to Computer Design. 4 Units.
The methodology and use of CAD tools for computer design, accomplished by a lab in which students practice design using commercially available silicon compilers and other tools.

Prerequisite: COMPSCI 151 and COMPSCI 152

COMPSCI 253. Analysis of Programming Languages. 4 Units.
Concepts in modern programming languages, their interaction, and the relationship between programming languages and methods for large-scale, extensible software development. Empirical analysis of programming language usage.

Same as SWE 212.

COMPSCI 253P. Advanced Programming and Problem Solving. 4 Units.
Provides in-depth preparation for industry interviews requiring demonstration of problem solving and programming skills. Emphasis is on understanding problem statements, considering edge cases, developing effective test cases, designing correct solutions, explaining these clearly, and implementing a solution correctly.

Corequisite: COMPSCI 260P

Restriction: Master of Computer Science Degree students only. Graduate students only.

COMPSCI 259S. Seminar in Design Science. 2 Units.
Current research and research trends in design science. Forum for presentation and criticism by students of research work in progress.

Repeatability: May be taken for credit 18 times.

COMPSCI 260. Fundamentals of the Design and Analysis of Algorithms. 4 Units.
Covers fundamental concepts in the design and analysis of algorithms and is geared toward non-specialists in theoretical computer science. Topics include: deterministic and randomized graph algorithms, fundamental algorithmic techniques like divide-and-conquer strategies and dynamic programming, and NP-completeness.

Prerequisite: COMPSCI 161

COMPSCI 260P. Fundamentals of Algorithms with Applications. 4 Units.
Covers fundamental concepts in the design and analysis of algorithms and is geared toward practical application and implementation. Topics include greedy algorithms, deterministic and randomized graph algorithms, models of network flow, fundamental algorithmic techniques, and NP-completeness.

Restriction: Graduate students only.

COMPSCI 261. Data Structures. 4 Units.
An in-depth treatment of data structures and their associated management algorithms including resource complexity analysis.

Prerequisite: I&C SCI 46 and COMPSCI 161

COMPSCI 261P. Data Structures with Applications. 4 Units.
Data structures and their associated management algorithms, including their applications and analysis.

Prerequisite: COMPSCI 260P

Restriction: Graduate students only.

COMPSCI 262. Computational Complexity. 4 Units.
Advanced course in computational models and complexity classes. Covers the fundamentals of Turing Machines, Decidability, and NP-completeness. Includes discussion of more advanced topics including polynomial hierarchy, randomized complexity classes, #P-completeness and hardness of approximation.

Prerequisite: COMPSCI 162
COMPSCI 262P. Automata and Grammars. 4 Units.
Principles and applications of automata, grammars, and formal languages. Topics include finite state machines, regular expressions, context-free grammars, pushdown automata, Turing machines, and the limits of computation, as well as text-processing applications in lexical analyzers and parsers.

Restriction: Master of Computer Science Degree students only. Graduate students only.

COMPSCI 263. Analysis of Algorithms. 4 Units.
Analysis of correctness and complexity of various efficient algorithms; discussion of problems for which no efficient solutions are known.

Prerequisite: COMPSCI 161 and COMPSCI 261

COMPSCI 264. Quantum Computation and Information. 4 Units.
Basic models for quantum computation and their foundations in quantum mechanics. Quantum complexity classes and quantum algorithms, including algorithms for factoring and quantum simulation. Introduction to quantum information theory and quantum entanglement.

Prerequisite: Basic courses in linear algebra and algorithms.

COMPSCI 265. Graph Algorithms. 4 Units.
Graph definitions, representation methods, graph problems, algorithms, approximation methods, and applications.

Prerequisite: COMPSCI 161 and COMPSCI 261

Concurrent with COMPSCI 163.

COMPSCI 266. Computational Geometry. 4 Units.
An overview of some of the basic problems in computational geometry and of some algorithmic and data-structuring techniques appropriate to their solution.

Prerequisite: COMPSCI 161 and COMPSCI 261

COMPSCI 267P. Data Compression. 4 Units.
An introduction to the theory and practice of modern data compression techniques. Topics include codes, coding, modeling, text compression, lossless and lossy image compression standards and systems, audio compression.

Restriction: Master of Computer Science Degree students only. Graduate students only.

COMPSCI 268. Introduction to Optimization. 4 Units.

Prerequisite: STATS 67 or (STATS 7 and STATS 120A) and (I&C SCI 6N or MATH 3A)

Restriction: School of Info & Computer Sci students have first consideration for enrollment.

Concurrent with COMPSCI 169.

COMPSCI 268P. Introduction to Optimization Modeling. 4 Units.

Restriction: Graduate students only.

COMPSCI 269S. Seminar in the Theory of Algorithms and Data Structures. 2 Units.
Current research and research trends in the Theory of algorithms and data structures.

Repeatability: May be taken for credit 18 times.

COMPSCI 271. Introduction to Artificial Intelligence. 4 Units.
The study of theories and computational models for systems which behave and act in an intelligent manner. Fundamental subdisciplines of artificial intelligence including knowledge representation, search, deduction, planning, probabilistic reasoning, natural language parsing and comprehension, knowledge-based systems, and learning.
COMPSCI 271P. Introduction to Artificial Intelligence. 4 Units.
The study of theories and computational models for systems which behave and act in an intelligent manner. Fundamental sub-disciplines of artificial intelligence, including knowledge representation, search, deduction, planning, probabilistic reasoning, natural language parsing and comprehension, knowledge-based systems, and learning.
Restriction: Graduate students only.

COMPSCI 272. Statistical Natural Language Processing. 4 Units.
Statistical models, machine learning algorithms, and computational tasks involved in natural language processing. Focuses on approaches that learn these models from data, and covers applications such as information extraction, dialog systems, machine translation, and question answering.
Prerequisite: COMPSCI 171 and COMPSCI 178
Restriction: School of Info & Computer Sci students have first consideration for enrollment. Graduate students only.

COMPSCI 273A. Machine Learning. 4 Units.
Computational approaches to learning algorithms for classifications, regression, and clustering. Emphasis is on discriminative classification methods such as decision trees, rules, nearest neighbor, linear models, and naive Bayes.
Prerequisite: COMPSCI 271 and COMPSCI 206

COMPSCI 273P. Machine Learning and Data Mining. 4 Units.
Introduction to principles of machine learning and data-mining. Learning algorithms for classifications, regression, and clustering. Emphasis is on discriminative classification methods such as decision trees, rules, nearest neighbor, linear models, and naive Bayes.
Prerequisite: Python programming knowledge is required.
Restriction: Master of Computer Science Degree students only. Graduate students only.

COMPSCI 274A. Probabilistic Learning: Theory and Algorithms. 4 Units.
An introduction to probabilistic and statistical techniques for learning from data, including parameter estimation, density estimation, regression, classification, and mixture modeling.
Prerequisite: COMPSCI 206

COMPSCI 274B. Learning in Graphical Models. 4 Units.
Models for data analysis are presented in the unifying framework of graphical models. The emphasis is on learning from data but inference is also covered. Real world examples are used to illustrate the material.
Prerequisite: COMPSCI 274A

COMPSCI 274C. Neural Networks and Deep Learning. 4 Units.
Neural network and deep learning from multiple perspectives. Theory of parallel distributed processing systems, algorithmic approaches for learning from data in various manners, applications to difficult problems in AI from computer vision, to natural language understanding, to bioinformatics and chemoinformatics.
Prerequisite: (STATS 120A and STATS 120B) or MATH 121A or COMPSCI 178 or COMPSCI 273A
Overlaps with COMPSCI 274A, COMPSCI 277, COMPSCI 276, COMPSCI 278, COMPSCI 274B, COMPSCI 273A.
Concurrent with COMPSCI 172B.

COMPSCI 274D. Artificial Intelligence Frontiers: Technical, Ethical, and Societal. 4 Units.
Explores the frontiers of artificial intelligence and related technologies with a focus on the underlying ethical, legal, and societal challenges and opportunities they create. Encourages critical thinking about these issues.
Prerequisite: Recommended: COMPSCI 172B and COMPSCI 178.
Restriction: Graduate students only.
Concurrent with COMPSCI 172C.
COMPSCI 274P. Neural Networks and Deep Learning. 4 Units.
Introduction to principles of machine learning and neural networks. Architecture design. Feedforward and recurrent networks. Learning models and algorithms. Applications to data analysis and prediction problems in areas such as machine vision, natural language processing, biomed, and finance.
Prerequisite: COMPSCI 271P. Knowledge of Python programming is required.
Restriction: Master of Computer Science Degree students only. Graduate students only.

COMPSCI 275. Network-based Reasoning/Constraint Networks. 4 Units.
Study of the theory and techniques of constraint network model. Covers techniques for solving constraint satisfaction problems: backtracking techniques, consistency algorithms, and structure-based techniques. Tractable subclasses. Extensions into applications such as temporal reasoning, diagnosis, and scheduling.
Prerequisite: Basic course in algorithm design and analysis.

COMPSCI 276. Reasoning in Probabilistic Graphical Models. 4 Units.
Focuses on algorithms for probabilistic reasoning using graphical models such as Bayesian Networks and Markov Networks that encode knowledge as local probabilistic relations. Tasks include finding most likely scenarios over a subset of variables, or updating posterior probability, given observations.
Prerequisite: A basic course in probability.

COMPSCI 278. Probability Models. 4 Units.
Advanced probability, discrete time Markov chains, Poisson processes, continuous time Markov chains. Queuing or simulation as time permits.
Prerequisite: STATS 120A
Concurrent with STATS 121.

COMPSCI 284A. Representations and Algorithms for Molecular Biology. 4 Units.
Introduction to computational methods in molecular biology, aimed at those interested in learning about this interdisciplinary area. Covers computational approaches to understanding and predicting the structure, function, interactions, and evolution of DNA, RNA, proteins, and related molecules and processes.
Prerequisite: A Basic course in algorithms, or a basic course in molecular biology.
Concurrent with COMPSCI 184A.

COMPSCI 284C. Computational Systems Biology. 4 Units.
Prerequisite: COMPSCI 284A or (BIO SCI 99 and MATH 2D)
Concurrent with COMPSCI 184C.

COMPSCI 285. Mathematical and Computational Biology. 4 Units.
Prerequisite: MATH 227A
Same as MATH 227C.

COMPSCI 290. Research Seminar. 2 Units.
Forum for presentation and criticism by students of research work in progress. Presentation of problem areas and related work. Specific goals and progress of research.
Grading Option: Satisfactory/unsatisfactory only.
Repeatability: May be repeated for credit unlimited times.
Restriction: Graduate students only.
COMPSCI 295. Special Topics in Information and Computer Science. 4 Units.
Studies in selected areas of Information and Computer Science. Topics addressed vary each quarter.

Repeatability: Unlimited as topics vary.

Restriction: Graduate students only.

COMPSCI 296. Elements of Scientific Writing. 4 Units.
Introduces the concepts and principles of good scientific writing, demonstrates them by examples drawn from the literature, and uses a hands-on approach to apply them to documents being written by the participants.

Grading Option: Satisfactory/unsatisfactory only.

COMPSCI 296P. Capstone Professional Writing and Communication for Computer Science Careers. 6 Units.
Written and oral communication for computer science and IT careers. Production of the detailed design and development document for the concurrent capstone design class and refinement of written documents and oral communications skills needed for a successful job search.

Corequisite: COMPSCI 297P
Prerequisite: Successful completion of 24 units in the Master of Computer Science program.

Restriction: Master of Computer Science Degree students only. Graduate students only.

COMPSCI 297P. Capstone Design Project for Computer Science. 6 Units.
Design and development of app, software system, or hardware component of system based on students’ prior knowledge of advanced computer science principles. Implement at least a working prototype and test this using relevant use cases and/or input data.

Corequisite: COMPSCI 296P
Prerequisite: Successful completion of 24 units in the Master of Computer Science program.

Restriction: Master of Computer Science Degree students only. Graduate students only.

COMPSCI 298. Thesis Supervision. 2-12 Units.
Individual research or investigation conducted in preparation for the M.S. thesis option or the dissertation requirements for the Ph.D. program.

Repeatability: May be repeated for credit unlimited times.

Restriction: Graduate students only. School of Information and Computer Science majors only.

COMPSCI 298P. Computer Science Practicum. 1-4 Units.
Internship in which students work individually at an outside organization to gain experience with the challenges involved in technology-related work.

Grading Option: Satisfactory/unsatisfactory only.

Repeatability: May be repeated for credit unlimited times.

Restriction: School of Info & Computer Sci students only. Master of Computer Science Degree students only. Graduate students only.

COMPSCI 299. Individual Study. 1-12 Units.
Individual research or investigation with Computer Science faculty.

Repeatability: May be repeated for credit unlimited times.

Restriction: Graduate students only. School of Information and Computer Science majors only.

COMPSCI 299P. Individual Study. 4-8 Units.
Supervised individual study in computer science.

Grading Option: Satisfactory/unsatisfactory only.

Repeatability: May be taken for credit 4 times.

Restriction: Master of Computer Science Degree students have first consideration for enrollment. Graduate students only.