School of Physical Sciences

Kenneth C. Janda, Dean
Undergraduate Counseling: (949) 824-6507
134 Rowland Hall
http://ps.uci.edu/stuaff

Overview

The School of Physical Sciences offers both professional training and general education in the Departments of Chemistry, Earth System Science, Mathematics, and Physics and Astronomy. The faculty, active in research and graduate education, are at the same time vitally concerned with undergraduate teaching. Curricula of the School are designed to meet the needs of a wide variety of students ranging from those with little technical background who seek insight into the activities and accomplishments of physical scientists to those seeking a comprehensive understanding that will prepare them for creative research in physical science.

Over the course of the past century and a half, physics, chemistry, and mathematics have evolved into interdependent but separate intellectual disciplines. This development is reflected in the departmental structure of the School of Physical Sciences. In the same period, these fundamental disciplines have moved into domains of abstraction unimagined by early scientists. This trend to abstraction with its concomitant increase in understanding of the physical universe provides the major challenge to the student of the physical sciences. Mathematics, physics, and chemistry, while providing the foundation of the technology that dominates contemporary civilization, underlie to an ever-increasing extent the new developments in the biological and social sciences. Earth system science is grounded in the traditional physical sciences while breaking new paths in the quantitative study of changes in the global environment.

Degrees

<table>
<thead>
<tr>
<th>Department</th>
<th>Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry</td>
<td>B.S., M.S., Ph.D.</td>
</tr>
<tr>
<td>Earth System Science</td>
<td>B.S., M.S., Ph.D.</td>
</tr>
<tr>
<td>Environmental Science</td>
<td>B.A.</td>
</tr>
<tr>
<td>Mathematics</td>
<td>B.S., M.S., Ph.D.</td>
</tr>
<tr>
<td>Physics</td>
<td>B.S., M.S., Ph.D.</td>
</tr>
</tbody>
</table>

Honors

Criteria used by the School of Physical Sciences in selecting candidates for honors at graduation are as follows: Approximately 1 percent will be awarded summa cum laude, 3 percent magna cum laude, and 8 percent cum laude. Honors are awarded on the basis of a student’s performance in research, cumulative grade point average, and performance in upper-division courses in the major. Students considered for honors at graduation must have completed 72 units in residence at the University of California. The student’s cumulative record at the end of the final quarter is the basis for all decisions regarding honors at graduation. Other important factors are considered visit at Honors Recognition. The School of Physical Sciences also grants special honors to students who have distinguished themselves by their work in their major subject.

• Preparation for Teaching Science and Mathematics (p. 2)
• Special Programs (p. 4)

Undergraduate Programs

Each department offers courses that are of value to nonmajors and majors in the sciences. The programs for majors are designed to meet the needs of students planning careers in business, education, or industry; of students planning advanced professional study; and of students planning graduate work that continues their major interest. Students who wish to complete a coordinated set of courses beyond the introductory level in Mathematics and in Earth and Atmospheric Sciences may pursue minors in these areas. Students interested in mathematical and computational biology may complete the Mathematics for Biology minor which prepares them for interdisciplinary graduate studies in this area. Introductory courses in chemistry, mathematics, and physics meet the needs of students majoring in the sciences, mathematics, and engineering and are also appropriate for students in other disciplines who seek a rigorous introduction to the physical sciences. In addition, a number of courses within the School have few or no prerequisites and are directed particularly toward students majoring in areas remote from the sciences.

Planning a Program of Study

Students who choose a major in the School of Physical Sciences have a variety of academic advising and counseling resources available to them. In addition to faculty advisors, there is a Chief Academic Advisor in each department who is responsible for interpreting degree requirements, reviewing student petitions, and assisting with special advising problems. An academic advising and counseling staff, employed in the Associate Dean’s Office,
School of Physical Sciences

is available to serve a broad range of student advising needs. In consultation with their faculty advisor or an academic counselor, students should plan a course of study leading to a major in one of the departments of the School. In carrying out this major, students may often concentrate very heavily in a second department within the School or in some other school. Occasionally students choose to pursue a double major. Permission to do so may be sought by an online application submitted to the Office of the Associate Dean of Physical Sciences.

All initial courses of study for majors include mathematics through calculus, and calculus is a prerequisite for much of the upper-division work in each major. A student interested in any of the physical sciences should continue mathematical training beyond these prerequisite courses. Furthermore, students interested in either physics or chemistry usually will include work in both of these subjects in their undergraduate careers.

Students in the physical sciences are urged to acquire a working knowledge of computer programming at an early stage of their University studies. This can be accomplished by taking one of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 5</td>
<td>Scientific Computing Skills</td>
</tr>
<tr>
<td>EECS 10</td>
<td>Computational Methods in Electrical and Computer</td>
</tr>
<tr>
<td>EECS 12</td>
<td>Introduction to Programming</td>
</tr>
<tr>
<td>ENGRMAE 10</td>
<td>Introduction to Engineering Computations</td>
</tr>
<tr>
<td>I&C SCI 31</td>
<td>Introduction to Programming</td>
</tr>
<tr>
<td>PHYSICS 53</td>
<td>Introduction to C and Numerical Analysis</td>
</tr>
</tbody>
</table>

Careers Opportunities

Many of the School of Physical Sciences graduates continue their education beyond the Bachelor’s degree level. Some pursue advanced academic degrees in preparation for careers in scientific or medical research, engineering, or postsecondary education. Other students will complete a secondary education credential in order to prepare for careers teaching high school mathematics and science. Some students enter professional school in areas such as medicine, dentistry, law, or business administration. Students who choose not to continue their studies beyond the baccalaureate level most frequently find employment in private business or industry. In addition to technical areas directly related to their major fields of study, students often enter careers in less obviously related fields such as computing, systems analysis, engineering, journalism, marketing, or sales.

The UCI Career Center provides services to students and alumni including career counseling, information about job opportunities, a career library, and workshops on resume preparation, job search, and interview techniques. See the Career Center (http://catalogue.uci.edu/previouseditions/2014-15/informationforadmittedstudents/lifeoncampus/#careerctrtext) section for additional information.

Preparation for Teaching Science and Mathematics

Option 1: Earn a Bachelor’s Degree, Education Concentration, and Teaching Credential

Physical Sciences students who are interested in pursuing a teaching career should consider the UCI Cal Teach Science and Mathematics Program. This program offers Chemistry, Earth System Science, Environmental Science, Mathematics, and Physics majors an option to earn their bachelor’s degree concurrently with a California Preliminary Single Subject Teaching Credential. Individuals who hold this credential are authorized to teach science (chemistry, geosciences, or physics) or math in a middle school or high school.

Students complete the degree requirements for their selected major, the requirements for an optional education concentration offered by the same department, and any additional teacher credentialing course requirements that are not included in the major or the concentration. The following courses are required for the Preliminary Single Subject Teaching Credential:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDUC 55</td>
<td>Knowing and Learning in Mathematics and Science</td>
</tr>
<tr>
<td>EDUC 109</td>
<td>Reading and Writing in Secondary Mathematics and Science Classrooms</td>
</tr>
<tr>
<td>EDUC 143AW</td>
<td>Classroom Interactions I</td>
</tr>
<tr>
<td>EDUC 143BW</td>
<td>Classroom Interactions II</td>
</tr>
<tr>
<td>EDUC 148</td>
<td>Complex Pedagogical Design</td>
</tr>
<tr>
<td>EDUC 158</td>
<td>Student Teaching Mathematics and Science in Middle/High School (two quarters)</td>
</tr>
<tr>
<td>LPS 60</td>
<td>The Making of Modern Science (for chemistry, geosciences, and physics credential candidates only)</td>
</tr>
<tr>
<td>MATH 8</td>
<td>Explorations in Functions and Modeling (for mathematics credential candidates only)</td>
</tr>
<tr>
<td>PHY SCI 5</td>
<td>California Teach 1: Introduction to Science and Mathematics Teaching</td>
</tr>
<tr>
<td>PHY SCI 105</td>
<td>California Teach 2: Middle School Science and Mathematics Teaching</td>
</tr>
<tr>
<td>PHYSICS 193</td>
<td>Research Methods</td>
</tr>
<tr>
<td>or CHEM 193</td>
<td>Research Methods</td>
</tr>
</tbody>
</table>
Beyond course work, some additional requirements for teacher certification are described below.

With careful, early planning, it is possible for students to complete their bachelor’s degree and teacher certification in four years. This is a more time-efficient and cost-effective route than the traditional five-year teacher preparation model, which usually involves a full academic year of teacher education courses and clinical teaching experience after completion of a bachelor’s degree.

After the School of Physical Sciences verifies the completion of all requirements for the bachelor’s degree and education concentration, students are awarded their degree from UC Irvine. The Preliminary Single Subject Teaching Credential is awarded by the California Commission on Teacher Credentialing (CTC) upon completion of a bachelor’s degree and the state-approved UCI teacher education program, which combines course work, student teaching, and a teaching performance assessment. The UCI School of Education must verify completion of all requirements for the teaching credential and then recommend that the credential be awarded to a candidate by the CTC.

Additional Requirements for Teacher Certification. In addition to the required course work for a California Preliminary Single Subject Teaching Credential, the following additional requirements must be satisfied:

1. The School of Physical Sciences requires a cumulative GPA of 2.0 (C) to graduate with the bachelor’s degree. However, students must earn a grade of C or better in each of the following courses in order to be recommended for the Preliminary Single Subject Credential: PHY SCI 105, EDUC 55, EDUC 143AW, EDUC 143BW, EDUC 148, and EDUC 158.

2. The following must be completed and verified prior to the start of student teaching in EDUC 158:
 a. Pass the California Basic Education Skills Test (CBEST), a basic mathematics and literacy skills test. For more information, visit the CBEST exam (http://www.ctcexams.nesinc.com) website.
 b. Pass the California Subject Exam for Teachers (CSET) in the discipline in which a candidate plans to earn a Preliminary Single Subject Credential (chemistry, geosciences, mathematics, or physics). Although secondary teachers are only required to pass the CSET exam in one discipline, those who pass the CSET exam in more than one disciplinary field (e.g., physics and mathematics) can be authorized to teach classes in each of those disciplines. For more information visit the CSET exam (http://www.ctcexams.nesinc.com/tests.asp) website. Mathematics majors have an option to waive the CSET exam by completing prescribed course work, referred to as a subject-matter preparation program (SMPP). More information is available at the School of Education’s Mathematics SMPP (http://www.gse.uci.edu/academic_programs/smpp/math.php) website.
 c. Secondary school science teachers in California are expected to have a broad range of general science knowledge in addition to their discipline of specialization, because their Single Subject Teaching Credential in one of the sciences also authorizes them to teach classes in general or integrated science. The general science subtests of the CSET exam cover foundational topics in astronomy, geodynamics, Earth resources, ecology, genetics and evolution, molecular biology and biochemistry, cell and organismal biology, waves, forces and motion, electricity and magnetism, heat transfer and thermodynamics, and structure and properties of matter. Although students can prepare for the CSET exam’s general science subtests through independent study, Physical Sciences students can also prepare themselves by taking lower-division courses that cover this content. Some suggested courses include BIO SCI 1A or BIO SCI 93 and BIO SCI 94; CHEM 1A-CHEM 1B-CHEM 1C; EARTHSS 1 and EARTHSS 7 and PHYSICS 20A.
 d. Obtain a CPR certificate in adult, child, or infant training.
 e. Obtain a TB test with negative results.

3. The following must be completed and verified before the School of Education is able to recommend an individual for the Preliminary Single Subject Credential:
 a. Complete a college-level course or pass an examination on the U.S. Constitution. POL SCI 21A satisfies this requirement. Contact the UCI School of Education Student Affairs Office for information about the exam.
 b. Obtain a CPR certificate in adult, child, or infant training.

Declaring Intention to Complete the Concentration and Teacher Certification. Prospective teachers who want to complete their degree and a teaching credential in four years are encouraged to start planning early by reviewing the sample programs for the major and the education concentration that they have selected, and to consult with an academic counselor. Interested students are encouraged to get started on the suggested first- and second-year credentialing course work, including PHY SCI 5 and PHY SCI 105, and can do so without officially declaring their intention to complete the concentration or the credential. However, students must declare their intention to complete the optional education concentration and their intention to earn the Preliminary Single Subject Teaching Credential by the end of their second year at the latest, and prior to enrolling in EDUC 55, which they would typically take in fall of their third year. Forms for declaring a selected education concentration and for declaring an intention to complete the teaching credential are available in the Cal Teach Science and Mathematics Resource and Advising Center (137 Bison Modular).

Option 2: Earn a Bachelor’s Degree and Education Concentration or Specialization

A second option for students interested in teaching science and mathematics is to earn a teaching credential in a post-baccalaureate teacher preparation program after completing their bachelor’s degree. UCI and other universities offer such programs, which typically require one academic year of education course work and clinical teaching experience. The Departments of Chemistry, Mathematics, and Physics and Astronomy offer the concentration in Chemistry Education, the specialization in Mathematics for Education, and the concentration in Physics Education, respectively, which are well suited for undergraduates who plan to pursue a teaching credential after finishing their degree. These programs offer strong grounding in the fundamentals of one discipline, and at the same time, emphasize the breadth in natural sciences needed by secondary science teachers. Each
department’s curriculum includes introductory courses on effective methods of science and mathematics teaching and provides opportunities for practical fieldwork experiences in a secondary school classroom. Detailed requirements for each program are provided in the departmental sections.

Special Programs

Campuswide Honors Program
The Campuswide Honors Program is available to selected high-achieving students from all academic majors from their freshman through senior years. For more information contact the Campuswide Honors Program, 1200 Student Services II; (949) 824-5461; honors@uci.edu ; or visit the Campuswide Honors Program (http://www.honors.uci.edu) website.

UC Education Abroad Program
Upper-division students have the opportunity to experience a different culture while making progress toward degree objectives through the University’s Education Abroad Program (EAP). UCEAP is an overseas study program which operates in cooperation with host universities and colleges throughout the world. Visit the Study Abroad Center (http://www.studyabroad.uci.edu) website for additional information.

Minor in Biomedical Engineering
The minor in Biomedical Engineering is an interdisciplinary curriculum that includes courses from the Schools of Engineering, Physical Sciences, and Biological Sciences. The minor is designed to provide a student in the physical sciences with the introductory skills needed in the quantitative biomedical arena. See The Henry Samueli School of Engineering (http://catalogue.uci.edu/previouseditions/2014-15/thehenrysamuelischoolofengineering/departmentofbiomedicalengineering/minortext) section of the Catalogue for more information.

Minor in Conflict Resolution
The interdisciplinary minor in Conflict Resolution provides skills in conflict analysis and resolution and a useful understanding of integrative institutions at the local, regional, and international levels. See School of Social Sciences (http://catalogue.uci.edu/previouseditions/2014-15/schoolofsocialsciences/theundergraduatemajorinternationalstudies/minortext) section of the Catalogue for more information.

Minor in Global Sustainability
The interdisciplinary minor in Global Sustainability trains students to understand the changes that need to be made in order for the human population to live in a sustainable relationship with the resources available on this planet. See Interdisciplinary Studies (http://catalogue.uci.edu/previouseditions/2014-15/interdisciplinarystudies/globalsustainability) section of the Catalogue for more information.

Requirements for the Bachelor’s Degree
All students must meet the University Requirements (http://catalogue.uci.edu/previouseditions/2014-15/informationforadmittedstudents/requirementsforabachelorsdegree).

School Requirements: None.
Departmental Requirements: Refer to individual departments.

Graduate Programs
The School offers M.S. and Ph.D. degree programs in the Departments of Chemistry, Earth System Science, Mathematics, and Physics and Astronomy. See the department sections for detailed information.

Faculty

Kevork N. Abazajian, Ph.D. University of California, San Diego, Associate Professor of Physics and Astronomy

Takeo Akasaki, Ph.D. University of California, Los Angeles, Professor Emeritus of Mathematics (ring theory)

Jun F. Allard, Ph.D. University of British Columbia, Assistant Professor of Mathematics; Physics and Astronomy (mathematical and computational biology)

Steven D. Allison, Ph.D. Stanford University, Associate Professor of Ecology and Evolutionary Biology; Earth System Science

Ioan Andricioaei, Ph.D. Boston University, Professor of Chemistry (chemical biology, physical chemistry and chemical physics, theoretical and computational)

Ara Apkarian, Ph.D. Northwestern University, Professor of Chemistry (physical chemistry and chemical physics)

Ramesh D. Arasasingham, Ph.D. University of California, Davis, Senior Lecturer of Chemistry (chemical education and inorganic chemistry)

Shane Ardo, Ph.D. Johns Hopkins University, Assistant Professor of Chemistry; Chemical Engineering and Materials Science (inorganic and organometallic, physical chemistry and chemical physics, polymer, materials, nanoscience)
Vladimir Baranovsky, Ph.D. University of Chicago, Associate Professor of Mathematics (algebra and number theory)

Aaron J. Barth, Ph.D. University of California, Berkeley, Professor of Physics and Astronomy

Steven W. Barwick, Ph.D. University of California, Berkeley, Professor of Physics and Astronomy

Gregory A. Benford, Ph.D. University of California, San Diego, Professor Emeritus of Physics and Astronomy

Donald R. Blake, Ph.D. University of California, Irvine, UCI Distinguished Professor of Chemistry (analytical, atmospheric, environmental)

Suzanne A. Blum, Ph.D. University of California, Berkeley, Associate Professor of Chemistry; Chemistry (inorganic and organometallic, organic and synthetic, physical chemistry and chemical physics, polymer, materials, nanoscience)

Andrew Borovik, Ph.D. University of North Carolina at Chapel Hill, Vice Chair and Professor of Chemistry (inorganic and organometallic, organic and synthetic)

David A. Brant, Ph.D. University of Wisconsin-Madison, Professor Emeritus of Chemistry (biophysical)

Amanda J. Brindley, Ph.D. University of California, Irvine, Lecturer with Potential Security of Employment of Chemistry (chemistry)

James S. Bullock, Ph.D. University of California, Santa Cruz, Gary McCue Administrative Term Chair in Cosmology and Professor of Physics and Astronomy

David A. Buote, Ph.D. Massachusetts Institute of Technology, Professor of Physics and Astronomy

Kieron Burke, Ph.D. University of California, Santa Barbara, Professor of Chemistry; Physics and Astronomy (physical chemistry and chemical physics, polymer, materials, nanoscience, theoretical and computational)

Frank B. Cannonito, Ph.D. Adelphi University, Professor Emeritus of Mathematics (group theory)

David W. Casper, Ph.D. University of Michigan, Associate Professor of Physics and Astronomy

A. Richard Chamberlin, Ph.D. University of California, San Diego, Department Chair and Professor of Pharmaceutical Sciences; Chemistry; Pharmacology (chemical biology, organic and synthetic)

Gary A. Chanan, Ph.D. University of California, Berkeley, Professor of Physics and Astronomy

Liu Chen, Ph.D. University of California, Berkeley, Research Professor and Professor Emeritus of Physics and Astronomy

Long Chen, Ph.D. Pennsylvania State University, Associate Professor of Mathematics (applied and computational mathematics)

Mu-Chun Chen, Ph.D. University of Colorado Boulder, Associate Professor of Physics and Astronomy

Alexander L. Chernyshev, Ph.D. Russian Academy of Sciences, Professor of Physics and Astronomy

Ralph J. Cicerone, Ph.D. University of Illinois at Urbana-Champaign, Professor Emeritus of Earth System Science

Philip Collins, Ph.D. University of California, Berkeley, Professor of Physics and Astronomy

Michael Cooper, Ph.D. University of California, Berkeley, Assistant Professor of Physics and Astronomy

Asantha R. Cooray, Ph.D. University of Chicago, Professor of Physics and Astronomy

Robert Corn, Ph.D. University of California, Berkeley, Professor of Chemistry; Biomedical Engineering (analytical, chemical biology, physical chemistry and chemical physics, polymer, materials, nanoscience)

Michael C. Cranston, Ph.D. University of Minnesota, Professor of Mathematics (probability)

Anthony V. Daly, M.F.A. University of California, Irvine, Lecturer of Physical Sciences

Donald A. Darling, Ph.D. California Institute of Technology, Professor Emeritus of Mathematics

Kristen A. Davis, Ph.D. Stanford University, Assistant Professor of Civil and Environmental Engineering; Earth System Science (coastal oceanography, fluid mechanics, turbulent flows)

Steven J. Davis, Ph.D. Stanford University, Assistant Professor of Earth System Science

Michael B. Dennin, Ph.D. University of California, Santa Barbara, Professor of Physics and Astronomy
Robert J. Doedens, Ph.D. University of Wisconsin-Madison, *Professor Emeritus of Chemistry* (inorganic and organometallic)

Vy M. Dong, Ph.D. California Institute of Technology, *Professor of Chemistry* (organic and synthetic)

Ellen R. Druffel, Ph.D. University of California, San Diego, *Fred Kavli Chair in Earth System Science* and *Professor of Earth System Science*

Todd Dupont, Ph.D. Pennsylvania State University, *Assistant Professor of Earth System Science*

Igor E. Dzyaloshinskii, Ph.D. Moscow State University, *Professor Emeritus of Physics and Astronomy*

Paul C. Eklof, Ph.D. Cornell University, *Professor Emeritus of Mathematics* (logic and algebra)

German A. Enciso Ruiz, Ph.D. Rutgers, the State University of New Jersey, *Associate Professor of Mathematics; Developmental and Cell Biology* (applied and computational mathematics, mathematical and computational biology)

Aaron P. Esser-Kahn, Ph.D. University of California, Berkeley, *Assistant Professor of Chemistry; Biomedical Engineering; Chemical Engineering and Materials Science* (chemical biology, organic and synthetic, polymer, materials, nanoscience)

William J. Evans, Ph.D. University of California, Los Angeles, *Professor of Chemistry* (inorganic and organometallic)

Catherine M. Famiglietti, Ph.D. Princeton University, *Lecturer of Mathematics* (calculus and numerical methods)

James S. Famiglietti, Ph.D. Princeton University, *Professor of Earth System Science; Civil and Environmental Engineering*

Jonathan L. Feng, Ph.D. Stanford University, *Professor of Physics and Astronomy*

Julie E. Ferguson, Ph.D. Oxford University, *Lecturer with Potential Security of Employment of Earth System Science*

Aleksandr Figotin, Ph.D. Tashkent University of Information Technologies, *Professor of Mathematics* (applied and computational mathematics, mathematical physics)

Mark Finkelstein, Ph.D. Stanford University, *Professor Emeritus of Mathematics; Center for Educational Partnerships* (analysis)

Barbara J. Finlayson-Pitts, Ph.D. University of California, Riverside, *Director of AirUCI and UCI Distinguished Professor of Chemistry; Chemistry* (chemistry, analytical, atmospheric and environmental, physical chemistry and chemical physics)

Zachary Fisk, Ph.D. University of California, San Diego, *UCI Distinguished Professor Emeritus of Physics and Astronomy*

Matthew Foreman, Ph.D. University of California, Berkeley, *Professor of Mathematics; Logic and Philosophy of Science* (ergodic theory and dynamical systems, logic and foundations)

Fillmore Freeman, Ph.D. Michigan State University, *Professor of Chemistry* (organic and synthetic, theoretical and computational)

Michael D. Fried, Ph.D. University of Michigan, *Professor Emeritus of Mathematics* (arithmetic geometry and complex variables)

Filipp Furche, Ph.D. University of Karlsruhe, *Professor of Chemistry* (physical chemistry and chemical physics, theoretical and computational)

Nien-Hui Ge, Ph.D. University of California, Berkeley, *Associate Professor of Chemistry* (analytical, chemical biology, physical chemistry and chemical physics, polymer, materials, nanoscience)

Robert B. Gerber, Ph.D. Oxford University, *Professor of Chemistry* (atmospheric and environmental, physical chemistry and chemical physics, theoretical and computational)

Anton Gorodetski, Ph.D. Moscow State University, *Associate Professor of Mathematics* (ergodic theory and dynamical systems)

Alon A. Gorodetsky, Ph.D. California Institute of Technology, *Assistant Professor of Chemical Engineering and Materials Science; Chemistry* (organic photovoltaics, electrical biosensors, nanotechnology, DNA, materials chemistry)

Michael L. Goulden, Ph.D. Stanford University, *Department Vice Chair and Professor of Earth System Science; Ecology and Evolutionary Biology*

Enrico Gratton, Ph.D. University of Rome, *Professor of Biomedical Engineering; Developmental and Cell Biology; Physics and Astronomy* (design of new fluorescence instruments, protein dynamics, single molecule, fluorescence microscopy, photon migration in tissues)

Claudia I. Green, Ph.D. Max Planck Institute, *Assistant Professor of Earth System Science*

Steven P. Gross, Ph.D. University of Texas at Austin, *Professor of Developmental and Cell Biology; Biomedical Engineering; Physics and Astronomy* (force generation by molecular motors in living cells)
Zhibin Guan, Ph.D. University of North Carolina at Chapel Hill, Professor of Chemistry; Biomedical Engineering (chemical biology, organic and synthetic, polymer, materials, nanoscience)

Arnold Guerra, Ph.D. University of California, Irvine, Lecturer of Physics and Astronomy

Patrick Q. Guidotti, Ph.D. University of Zurich, Professor of Mathematics (analysis and partial differential equations, applied and computational mathematics)

Gultekin Gulsen, Ph.D. Bogazici University, Associate Professor of Radiological Sciences; Biomedical Engineering; Electrical Engineering and Computer Science; Physics and Astronomy (in vivo molecular imaging, diffuse optical tomography, fluorescence tomography, photo-magnetic imaging, multimodality imaging)

Herbert W. Hamber, Ph.D. University of California, Santa Barbara, Professor of Physics and Astronomy

Stephen Hanessian, Ph.D. Ohio State University, Director of Medicinal Chemistry and Pharmacology Graduate Program and Professor of Pharmaceutical Sciences; Chemistry; Pharmacology (organic chemistry)

Warren J. Huhre, Ph.D. Carnegie Mellon University, Professor Emeritus of Chemistry (physical theoretical chemistry)

William W. Heidbrink, Ph.D. Princeton University, Professor of Physics and Astronomy

John C. Hemminger, Ph.D. Harvard University, Vice Chancellor for Research and Professor of Chemistry (analytical, atmospheric and environmental, physical chemistry and chemical physics, polymer, materials, nanoscience)

Alan F. Heyduk, Ph.D. Massachusetts Institute of Technology, Associate Professor of Chemistry (chemical biology, inorganic and organometallic)

Hamid Hezari, Ph.D. Johns Hopkins University, Assistant Professor of Mathematics (analysis and partial differential equations)

Wilson Ho, Ph.D. University of Pennsylvania, Donald Bren Professor and Professor of Physics and Astronomy; Chemistry (physical chemistry and chemical physics, polymer, materials, nanoscience)

Allon I. Hochbaum, Ph.D. University of California, Berkeley, Assistant Professor of Chemical Engineering and Materials Science; Chemistry (nanoscale materials and hybrid bio-inorganic devices for applications in clean energy)

Herbert J. Hopster, Ph.D. Aachen University, Professor Emeritus of Physics and Astronomy

Kenneth C. Janda, Ph.D. Harvard University, Dean of the School of Physical Sciences and Professor of Chemistry (physical chemistry and chemical physics)

Elizabeth R. Jarvo, Ph.D. Boston College, Associate Professor of Chemistry (inorganic and organometallic, organic and synthetic)

Svetlana Jitomirskaya, Ph.D. Moscow State University, UCI Chancellor's Fellow and Professor of Mathematics (mathematical physics)

Kathleen Johnson, Ph.D. University of California, Berkeley, Assistant Professor of Earth System Science

Manoj Kaplinghat, Ph.D. Ohio State University, Professor of Physics and Astronomy

Saewung Kim, Ph.D. Georgia Institute of Technology, Assistant Professor of Earth System Science

Susan M. King, Ph.D. University of California, Berkeley, Assistant Professor of Earth System Science

Abel Klein, Ph.D. Massachusetts Institute of Technology, Professor of Mathematics (mathematical physics)

Natalia Komarova, Ph.D. University of Arizona, Professor of Mathematics; Ecology and Evolutionary Biology (applied and computational mathematics, mathematical and computational biology, mathematics of complex and social phenomena)

Ilya N. Krivorotov, Ph.D. University of Minnesota, Associate Professor of Physics and Astronomy

Andrew J. Lankford, Ph.D. Yale University, Professor of Physics and Astronomy

Matthew Law, Ph.D. University of California, Berkeley, Assistant Professor of Chemistry; Chemical Engineering and Materials Science (inorganic and organometallic, physical chemistry and chemical physics, polymer, materials, nanoscience)

Jon M. Lawrence, Ph.D. University of Rochester, Professor Emeritus of Physics and Astronomy

Rachel Lehman, Ph.D. University of California, Irvine, Lecturer of Mathematics (mathematics education and probability)
Peter Li, Ph.D. University of California, Berkeley, Professor Emeritus of Mathematics (geometry and topology)

Song-Ying Li, Ph.D. University of Pittsburgh, Professor of Mathematics (analysis and partial differential equations)

Zhijong Lin, Ph.D. Princeton University, Professor of Physics and Astronomy

Renee Link, Ph.D. University of California, Irvine, Lecturer with Potential Security of Employment of Chemistry (organic chemistry)

Chang C. Liu, Ph.D. Scripps Research Institute, Assistant Professor of Biomedical Engineering; Chemistry (genetic engineering, directed evolution, synthetic biology, chemical biology)

John S. Lowengrub, Ph.D. Courant Institute of Mathematical Sciences, UCI Chancellor's Professor of Mathematics; Biomedical Engineering; Chemical Engineering and Materials Science (applied and computational mathematics, mathematical and computational biology)

Zhiqin Lu, Ph.D. Courant Institute of Mathematical Sciences, Professor of Mathematics (geometry and topology)

Andrej Luptak, Ph.D. Yale University, Vice Chair of Graduate Programs in Pharmaceutical Sciences and Associate Professor of Pharmaceutical Sciences; Chemistry; Molecular Biology and Biochemistry (chemical biology)

Penelope J. Maddy, Ph.D. Princeton University, UCI Distinguished Professor of Logic and Philosophy of Science; Mathematics; Philosophy (philosophy of mathematics and logic, meta-philosophy)

Vladimir A. Mandelshtam, Ph.D. Russian Academy of Sciences, Professor of Chemistry (physical chemistry and chemical physics, theoretical and computational)

Alexei A. Maradudin, Ph.D. University of Bristol, Professor Emeritus of Physics and Astronomy

Rachel Martin, Ph.D. Yale University, Associate Professor of Chemistry; Molecular Biology and Biochemistry (analytical, chemical biology, physical chemistry and chemical physics)

Adam Martiny, Ph.D. Technical University of Denmark, Associate Professor of Earth System Science; Ecology and Evolutionary Biology

Robert McIver, Ph.D. Stanford University, Professor Emeritus of Chemistry

Roger D. McWilliams, Ph.D. Princeton University, Professor of Physics and Astronomy

George E. Miller, Ph.D. Oxford University, Senior Lecturer with Security of Employment Emeritus of Chemistry (analytical and radioanalytical chemistry and chemical education)

Eric D. Mjolsness, Ph.D. California Institute of Technology, Professor of Computer Science; Mathematics (applied mathematics, mathematical biology, modeling languages)

David L. Mobley, Ph.D. University of California, Davis, Associate Professor of Pharmaceutical Sciences; Chemistry (chemical biology, physical chemistry and chemical physics, theoretical and computational)

William R. Molzon, Ph.D. University of Chicago, Professor of Physics and Astronomy

Harold W. Moore, Ph.D. University of Illinois at Urbana-Champaign, Professor Emeritus of Chemistry (organic and synthetic)

Jefferson Moore, Ph.D. Oregon State University, Professor of Earth System Science

Shaul Mukamel, Ph.D. Tel Aviv University, UCI Distinguished Professor of Chemistry (physical chemistry and chemical physics, polymer, materials, nanoscience, theoretical and computational)

Simona Murgia, Ph.D. Michigan State University, Assistant Professor of Physics and Astronomy

Craig Murray, Ph.D. University of Edinburgh, Assistant Professor of Chemistry (atmospheric and environmental, physical chemistry and chemical physics)

Riley D. Newman, Ph.D. University of California, Berkeley, Professor Emeritus of Physics and Astronomy; Logic and Philosophy of Science; Physics and Astronomy
Qing Nie, Ph.D. Ohio State University, Professor of Mathematics; Biomedical Engineering (computational mathematics, systems biology, cell signaling, stem cell)

Sergey Nizkorodov, Ph.D. University of Basel, Professor of Chemistry (analytical, atmospheric and environmental, physical chemistry and chemical physics)

James S. Nowick, Ph.D. Massachusetts Institute of Technology, Professor of Chemistry (chemical biology, organic and synthetic, polymer, materials, nanoscience)

Larry E. Overman, Ph.D. University of Wisconsin-Madison, UCI Distinguished Professor of Chemistry (chemical biology, inorganic and organometallic, organic and synthetic)

Alessandra Pantano, Ph.D. Princeton University, Lecturer with Potential Security of Employment in Mathematics (algebra and number theory)

Siddah Ashok Parameswaran, Ph.D. Princeton University, Assistant Professor of Physics and Astronomy

William H. Parker, Ph.D. University of Pennsylvania, Professor Emeritus of Physics and Astronomy

Reginald M. Penner, Ph.D. Texas A&M University, Department Chair and UCI Chancellor’s Professor of Chemistry; Chemical Engineering and Materials Science (analytical, physical chemistry and chemical physics, polymer, materials, nanoscience)

Eric Potma, Ph.D. University of Groningen, Department Vice Chair and Associate Professor of Chemistry (analytical, chemical biology, physical chemistry and chemical physics)

Thomas L. Poulos, Ph.D. University of California, San Diego, UCI Chancellor’s Professor of Molecular Biology and Biochemistry; Chemistry; Pharmaceutical Sciences; Physiology and Biophysics (chemical biology)

Michael J. Prather, Ph.D. Yale University, UCI Endowed Chair and Professor of Earth System Science

Jennifer A. Prescher, Ph.D. University of California, Berkeley, Assistant Professor of Chemistry; Molecular Biology and Biochemistry; Pharmaceutical Sciences (chemical biology, organic and synthetic)

Francois W. Primeau, Ph.D. Massachusetts Institute of Technology, Associate Professor of Earth System Science

Michael S. Pritchard, Ph.D. University of California, San Diego, Assistant Professor of Earth System Science

Sergey V. Pronin, Ph.D. University of Chicago, Assistant Professor of Chemistry (organic chemistry)

Arvind Rajaraman, Ph.D. Stanford University, Professor of Physics and Astronomy

James T. Randerson, Ph.D. Stanford University, UCI Chancellor’s Professor of Earth System Science; Ecology and Evolutionary Biology

David L. Rector, Ph.D. Massachusetts Institute of Technology, Professor Emeritus of Mathematics (algebraic topology and computer algebra)

William S. Reeburgh, Ph.D. Johns Hopkins University, Professor Emeritus of Earth System Science

Robert C. Reilly, Ph.D. University of California, Berkeley, Professor Emeritus of Mathematics (geometry and topology)

Peter M. Rentzepis, Ph.D. Cambridge University, UC Presidential Chair and Professor of Chemistry; Chemical Engineering and Materials Science (physical chemistry and chemical physics)

Markus W. Ribbe, Ph.D. University of Bayreuth, UCI Chancellor’s Professor of Molecular Biology and Biochemistry; Chemistry (chemical biology, inorganic and organometallic)

Eric Rignot, Ph.D. University of Southern California, Department Vice Chair and Professor of Earth System Science

Thorsten Ritz, Ph.D. University of Ulm, Professor of Physics and Astronomy

Norman Rostoker, Sc.D. Carnegie Institute of Technology, Research Professor and Professor Emeritus of Physics and Astronomy

Karl Rubin, Ph.D. Harvard University, Department Chair and Edward and Vivian Thorp Chair in Mathematics and Professor of Mathematics (algebra and number theory)

Bernard Russo, Ph.D. University of California, Los Angeles, Professor Emeritus of Mathematics (functional analysis)

James E. Rutledge, Ph.D. University of Illinois at Chicago Circle, Associate Dean of the School of Physical Sciences and Professor of Physics and Astronomy

Scott D. Rychnovsky, Ph.D. Columbia University, Professor of Chemistry (chemical biology, organic and synthetic)
Nathan Rynn, Ph.D. Stanford University, *Professor Emeritus of Physics and Astronomy*

Donald G. Saari, Ph.D. Purdue University, *UCI Distinguished Professor of Economics; Logic and Philosophy of Science; Mathematics* (ergodic theory and dynamical systems, mathematics of complex social phenomena)

Eric S. Saltzman, Ph.D. University of Miami, *Professor of Earth System Science; Chemistry* (analytical, atmospheric and environmental)

Martin Schechter, Ph.D. University of California, Irvine, *Professor of Mathematics* (analysis and partial differential equations, mathematical physics)

Stephen Scheinberg, Ph.D. Princeton University, *Professor Emeritus of Mathematics*

Jonas Schultz, Ph.D. Columbia University, *Professor Emeritus of Physics and Astronomy; International Studies; Logic and Philosophy of Science*

A. J. Shaka, Ph.D. Oxford University, *Professor of Chemistry* (chemical biology, physical chemistry and chemical physics)

Kenneth J. Shea, Ph.D. Pennsylvania State University, *Professor of Chemistry; Chemical Engineering and Materials Science* (analytical, chemical biology, organic and synthetic, polymer, materials, nanoscience)

Yuri Shirman, Ph.D. University of California, Santa Cruz, *Professor of Physics and Astronomy*

Alice Silverberg, Ph.D. Princeton University, *Professor of Mathematics; Computer Science* (algebra and number theory)

Dennis J. Silverman, Ph.D. Stanford University, *Professor Emeritus of Physics and Astronomy*

Zuzanna S. Siwy, Ph.D. Silesian University of Technology, *Professor of Physics and Astronomy; Biomedical Engineering; Chemistry* (biosensing, nanotechnology, condensed matter physics)

Tammy Ann Smecker-Hane, Ph.D. Johns Hopkins University, *Associate Professor of Physics and Astronomy*

William H. Smoke, Ph.D. University of California, Berkeley, *Professor Emeritus of Mathematics* (homological algebra)

Henry W. Sobel, Ph.D. Case Western Reserve University, *Professor of Physics and Astronomy*

Knut Solna, Ph.D. Stanford University, *Professor of Mathematics* (applied and computational mathematics, inverse problems and imaging, probability)

Soroosh Sorooshian, Ph.D. University of California, Los Angeles, *Director of the Center for Hydrometeorology and Remote Sensing and UCI Distinguished Professor of Civil and Environmental Engineering; Earth System Science* (hydrology, hydrometeorology and hydroclimate modeling, remote sensing, water sources management)

Ronald J. Stern, Ph.D. University of California, Los Angeles, *Professor Emeritus of Mathematics* (geometry and topology)

Jeffrey D. Streets, Ph.D. Duke University, *Assistant Professor of Mathematics* (geometry and topology)

Min-Ying Su, Ph.D. University of California, Irvine, *Professor of Radiological Sciences; Physics and Astronomy*

Peter Taborek, Ph.D. California Institute of Technology, *Department Chair and Professor of Physics and Astronomy*

Agnes Taffard, Ph.D. University of Liverpool, *Associate Professor of Physics and Astronomy*

Timothy Tait, Ph.D. Michigan State University, *UCI Chancellor's Fellow and Professor of Physics and Astronomy*

Fumiko Tajima, Ph.D. University of Tokyo, *Lecturer of Physics and Astronomy*

Toshiki Tajima, Ph.D. University of California, Irvine, *UCI Endowed Chair and Adjunct Professor of Physics and Astronomy*

Chuu-Lian Terng, Ph.D. Brandeis University, *UCI ADVANCE Term Chair and Professor of Mathematics* (geometry and topology, mathematical visualization)

Edriss S. Titi, Ph.D. Indiana University, *Professor Emeritus of Mathematics; Mechanical and Aerospace Engineering* (analysis and partial differential equations, applied and computational mathematics)

Douglas J. Tobias, Ph.D. Carnegie Mellon University, *Professor of Chemistry* (atmospheric and environmental, chemical biology, physical chemistry and chemical physics, theoretical and computational)

Ivan V. Tomov, Ph.D., *Associate Specialist of Chemistry*

Virginia L. Trimble, Ph.D. California Institute of Technology, *Professor of Physics and Astronomy*

Susan E. Trumbore, Ph.D. Columbia University, *Professor of Earth System Science*
Shiou-Chuan (Sheryl) Tsai, Ph.D. University of California, Berkeley, *UCI Chancellor's Fellow and Professor of Molecular Biology and Biochemistry; Chemistry; Pharmaceutical Sciences*

Li Sheng Tseng, Ph.D. University of Chicago, *Assistant Professor of Mathematics* (geometry and topology, mathematical physics)

Howard G. Tucker, Ph.D. University of California, Berkeley, *Professor Emeritus of Mathematics* (probability and statistics)

Mark Vagins, Ph.D. Yale University, *Adjunct Professor of Physics and Astronomy*

David Van Vranken, Ph.D. Stanford University, *Professor of Chemistry* (chemical biology, organic and synthetic)

Christopher Vanderwal, Ph.D. Scripps Research Institute, *Professor of Chemistry* (organic and synthetic)

Gerard Vanhoven, Ph.D. Standford University, *Professor Emeritus of Physics and Astronomy*

Isabella Velicogna, Ph.D. Università degli Studi di Trieste, *Associate Professor of Earth System Science*

Jasper A. Vrugt, Ph.D. University of Amsterdam, *Assistant Professor of Civil and Environmental Engineering; Earth System Science* (surface hydrology and soil physics)

Richard F. Wallis, Ph.D. Catholic University of America, *Professor Emeritus of Physics and Astronomy*

Sean P. Walsh, Ph.D. University of Notre Dame, *Assistant Professor of Logic and Philosophy of Science; Mathematics* (philosophy of mathematics, philosophy of logic and mathematical logic)

Daqing Wan, Ph.D. University of Washington, *Professor of Mathematics* (algebra and number theory)

Frederic Yui-Ming Wan, Ph.D. Massachusetts Institute of Technology, *Professor of Mathematics; Mechanical and Aerospace Engineering* (applied and computational mathematics, mathematical and computational biology)

Gregory A. Weiss, Ph.D. Harvard University, *Professor of Chemistry; Molecular Biology and Biochemistry* (analytical, chemical biology, organic and synthetic, polymer, materials, nanoscience)

Frank J. Wessel, Ph.D. University of California, Irvine, *Project Scientist of Physics and Astronomy*

Robert W. West, Ph.D. University of Michigan, *Professor Emeritus of Mathematics* (algebraic topology)

Joel J. Westman, Ph.D. University of California, Los Angeles, *Professor Emeritus of Mathematics* (analysis)

Steven R. White, Ph.D. Cornell University, *Professor of Physics and Astronomy*

Daniel Whiteson, Ph.D. University of California, Berkeley, *Associate Professor of Physics and Astronomy; Logic and Philosophy of Science*

Robert J. Whitley, Ph.D. New Mexico State University, *Professor Emeritus of Mathematics* (analysis)

Laurel L. Wilkening, Ph.D. University of California, San Diego, *Professor Emerita of Earth System Science*

Janet L. Williams, Ph.D. Brandeis University, *Professor Emerita of Mathematics* (probability and statistics)

Dominik Franz X. Wodarz, Ph.D. Oxford University, *Professor of Ecology and Evolutionary Biology; Mathematics* (mathematical biology, infectious disease and cancer)

Max Wolfsberg, Ph.D. Washington University, *Professor Emeritus of Chemistry* (physical chemistry and chemical physics, theoretical and computational)

Ruqian Wu, Ph.D. Institute of Physics, Chinese Academy of Science, *Professor of Physics and Astronomy*

Jing Xia, Ph.D. Stanford University, *Assistant Professor of Physics and Astronomy*

Jack Xin, Ph.D. New York University, *Professor of Mathematics* (applied and computational mathematics, mathematical and computational biology, probability)

Jenny Y. Yang, Ph.D. Massachusetts Institute of Technology, *Assistant Professor of Chemistry* (inorganic and organometallic, organic and synthetic, polymer, materials, nanoscience)

Albert Fan Yee, Ph.D. University of California, Berkeley, *Professor of Chemical Engineering and Materials Science; Biomedical Engineering; Chemistry* (materials science aspects of polymers and soft materials, particularly on how they are used to impact nanotechnology)

James J. Yeh, Ph.D. University of Minnesota, *Professor Emeritus of Mathematics* (analysis and partial differential equations, probability)
Chemistry Courses

CHEM 1A. General Chemistry. 4 Units.
Atomic structure; general properties of the elements; covalent, ionic, and metallic bonding; intermolecular forces; mass relationships.
Prerequisite: MATH 2A or PHYSICS 7C or CHEM 1P or placement via a score of 600 or higher on the SAT Mathematics Reasoning test, or a score of 27 or higher on the ACT Mathematics test, or a score of 700 or higher on the SAT Chemistry subject exam, or a score of 3 on the AP Chemistry exam, or a score of 4 on the AP Calc AB Exam, or a score of 3 on the AP Calc BC Exam. CHEM 1P with a grade of C- or better.
Overlaps with CHEM H2A, ENGR 1A.
Restriction: Majors in the Schools of Physical Sciences, Biological Sciences, and Engineering, and majors in Nursing Science, Pharmaceutical Sciences, Public Health Sciences, and Undecided/Undeclared students have first consideration for enrollment.
(II, Va)

CHEM 1B. General Chemistry. 4 Units.
Properties of gases, liquids, solids; changes of state; properties of solutions; stoichiometry; thermochemistry; and thermodynamics.
Corequisite: CHEM M2LB. CHEM M2LB for Chemistry majors only. No co-requisite for other majors.
Prerequisite: CHEM 1A or ENGR 1A or a score of 4 or higher on the AP Chemistry exam. CHEM 1A with a grade of C- or better. ENGR 1A with a grade of C- or better.
Overlaps with CHEM H2B.
Restriction: Majors in the Schools of Physical Sciences, Biological Sciences, and Engineering, and majors in Nursing Science, Pharmaceutical Sciences, Public Health Sciences, and Undecided/Undeclared students have first consideration for enrollment.
(II, Va)

CHEM 1C. General Chemistry. 4 Units.
Equilibria, aqueous acid-base equilibria, solubility equilibria, oxidation reduction reactions, electrochemistry; kinetics; special topics.
Corequisite: CHEM 1LC.
Prerequisite: CHEM 1B. CHEM 1B with a grade of C- or better.
Overlaps with CHEM H2C.
Restriction: Majors in the Schools of Physical Sciences, Biological Sciences, and Engineering, and majors in Nursing Science, Pharmaceutical Sciences, Public Health Sciences, and Undecided/Undeclared students have first consideration for enrollment.
(II, Va)
CHEM 1LC. General Chemistry Laboratory. 2 Units.
Training and experience in basic laboratory techniques. Chemical practice and principles illustrated through experiments related to lecture topics of CHEM 1A-B-C. Materials fee.

Corequisite: CHEM 1C.
Prerequisite: CHEM 1B. CHEM 1B with a grade of C- or better.

Overlaps with CHEM 1LE, CHEM H2LB, CHEM M2LB.

Restriction: No credit for CHEM 1LC if taken after CHEM H2LB or CHEM M2LB. Majors in the Schools of Physical Sciences, Biological Sciences, and Engineering, and majors in Nursing Science, Pharmaceutical Sciences, Public Health Sciences, and Undecided/Undeclared students have first consideration for enrollment.

CHEM 1LD. General Chemistry Laboratory. 2 Units.
Training and experience in basic laboratory techniques. Chemical practice and principles illustrated through experiments related to lecture topics in CHEM 1A-B-C. Materials fee.

Prerequisite: CHEM 1C and CHEM 1LC or CHEM 1LE. CHEM 1C with a grade of C- or better. CHEM 1LC with a grade of C- or better. CHEM 1LE with a grade of C- or better.

Overlaps with CHEM H2LB, CHEM M2LB.

Restriction: No credit for CHEM M2LA if taken after CHEM 1LD. Majors in the Schools of Physical Sciences, Biological Sciences, and Engineering, and majors in Nursing Science, Pharmaceutical Sciences, Public Health Sciences, and Undecided/Undeclared students have first consideration for enrollment.

CHEM 1LE. Accelerated General Chemistry Lab. 3 Units.
Lecture and experiments covering chemical concepts for accelerated students who do not plan to take organic chemistry. Properties of gases, liquids, solutions, and solids; chemical equilibrium, chemical thermodynamics; atomic and molecular structure; chemical kinetics; electrochemistry. Materials fee.

Corequisite: CHEM 1A or CHEM 1B or ENGR 1A.

Overlaps with CHEM 1LC.

Restriction: Majors in the School of Engineering and Biomedical Computing majors have first consideration for enrollment.

CHEM 1P. Preparation for General Chemistry Online. 4 Units.
Units of measurement, dimensional analysis, significant figures; elementary concepts of volume, mass, force, pressure, energy, density, temperature, heat, work; fundamentals of atomic and molecular structure; the mole concept, stoichiometry; properties of the states of matter; gas laws; solutions concentrations. Course may be offered online.

Restriction: Majors in the Schools of Physical Sciences, Biological Sciences, and Engineering, and majors in Biomedical Computing, Nursing Science, Pharmaceutical Sciences, Public Health Sciences, and Undecided/Undeclared students have first consideration for enrollment.

CHEM H2A. Honors General Chemistry. 4 Units.
Covers the same material as CHEM 1A-B-M3C but in greater depth. Additional topics will also be included as time permits.

Corequisite: CHEM H2LA.
Prerequisite: Membership in the Campuswide Honors Program, or a score of 4 or 5 on the Chemistry Advanced Placement Examination, or a score of 700 or better on the SAT II in Chemistry.

Overlaps with CHEM 1A.

(II, Va)

CHEM H2B. Honors General Chemistry. 4 Units.
Covers the same material as CHEM 1A-B-M3C but in greater. depth. Additional topics will also be included as time permits.

Corequisite: CHEM H2LB.
Prerequisite: CHEM H2A and CHEM H2LA. CHEM H2A with a grade of B or better. CHEM H2LA with a grade of B or better.

Overlaps with CHEM 1B.

(II, Va)
CHEM H2C. Honors General Chemistry. 4 Units.
Covers the same material as CHEM 1A-CHEM 1B-CHEM M3C but in greater depth. Additional topics will also be included as time permits.
Corequisite: CHEM H2LC.
Prerequisite: CHEM H2B and CHEM H2LB. CHEM H2B with a grade of B or better. CHEM H2LB with a grade of B or better.
Overlaps with CHEM 1C.

(II, Va)

CHEM H2LA. Honors General Chemistry Laboratory. 3 Units.
Training and experience in fundamental and analytical laboratory techniques through experiments related to lecture topics in CHEM H2A-CHEM H2B-CHEM H2C. Materials fee.
Corequisite: CHEM H2A.
Prerequisite: Membership in the Campuswide Honors Program, or a score of 4 or 5 on the Chemistry Advanced Placement Examination, or a score of 700 or better on the SAT II in Chemistry.
Overlaps with CHEM M2LA.

CHEM H2LB. Honors General Chemistry Laboratory. 3 Units.
Training and experience in fundamental and analytical laboratory techniques through experiments related to lecture topics in CHEM H2A-CHEM H2B-CHEM H2C. Materials fee.
Corequisite: CHEM H2B.
Prerequisite: CHEM H2A and CHEM H2LA. CHEM H2A with a grade of B or better. CHEM H2LA with a grade of B or better.
Overlaps with CHEM M2LB.
Restriction: No credit for CHEM 1LC if taken after CHEM H2LB or CHEM M2LB.

CHEM H2LC. Honors General Chemistry Laboratory. 3 Units.
Training and experience in fundamental and analytical laboratory techniques through experiments related to lecture topics in CHEM H2A-CHEM H2B-CHEM H2C. Materials fee.
Corequisite: CHEM H2C.
Prerequisite: CHEM H2B and CHEM H2LB. CHEM H2B with a grade of B or better. CHEM H2LB with a grade of B or better.

CHEM M2LA. Majors General Chemistry Laboratory. 3 Units.
Training and experience in basic laboratory techniques through experiments related to lecture topics in CHEM 1A-CHEM 1B-CHEM 1C. Materials fee.
Corequisite: CHEM 1A.
Prerequisite: High school chemistry.
Overlaps with CHEM H2LA, CHEM 1LD.
Restriction: Chemistry majors only. No credit for CHEM M2LA if taken after CHEM 1LD.

CHEM M2LB. Majors General Chemistry Laboratory. 3 Units.
Training and experience in basic laboratory techniques through experiments related to lecture topics in CHEM 1A-CHEM 1B-CHEM 1C. Materials fee.
Corequisite: CHEM 1B.
Prerequisite: CHEM 1A and CHEM M2LA. CHEM 1A with a grade of C- or above. CHEM M2LA with a grade of C- or above.
Overlaps with CHEM H2LB.
Restriction: No credit for CHEM 1LC if taken after CHEM H2LB or CHEM M2LB. Chemistry majors only.
CHEM M3C. Majors Quantitative Analytical Chemistry. 4 Units.
Topics covered are equilibria, aqueous acid-base equilibria, solubility equilibria, oxidation reduction reactions, electrochemistry; and kinetics with a special emphasis on the statistical treatment of data and analytical methods of chemical analysis.

Corequisite: CHEM M3LC.
Prerequisite: (CHEM 1B and CHEM M2LB) or (CHEM H2B and H2LB). CHEM 1B with a grade of C- or better. CHEM M2LB with a grade of C- or better. CHEM H2B with a grade of C- or better. CHEM H2LB with a grade of C- or better.

Restriction: Chemistry majors only.

II, Va

CHEM M3LC. Majors Quantitative Analytical Chemistry Laboratory. 3 Units.
Training and experience in analytical laboratory techniques through experiments related to lecture topics in CHEM M3C.

Corequisite: CHEM M3C or CHEM H2C.
Prerequisite: (CHEM 1B or CHEM H2B) and (CHEM M2LB or CHEM H2LB). CHEM 1B with a grade of C- or better. CHEM H2B with a grade of C- or better. CHEM M2LB with a grade of C- or better. CHEM H2LB with a grade of C- or better.

Overlaps with CHEM H2LC.

Restriction: Chemistry majors only.

CHEM 5. Scientific Computing Skills. 4 Units.
Introduces students to the personal computing software used by chemists for managing and processing of data sets, plotting of graphs, symbolic and numerical manipulation of mathematical equations, and representing chemical reactions and chemical formulas.

Corequisite: (CHEM 1C or CHEM H2C or CHEM M3C) and (MATH 2D or MATH H2D).
Prerequisite: CHEM 1B or CHEM H2B and MATH 2B or a score of 4 or 5 on the AP CALCULUS BC.

Restriction: Chemistry majors have first consideration for enrollment.

CHEM 12. Chemistry Around Us. 4 Units.
Addresses ways in which chemistry affects everyday life. Topics include pollution, global warming, water supply/demands, biodiesel fuels, foods we eat, natural/synthetic materials, common drugs, drug design. Learn and apply basic chemistry concepts. Use risk/benefit analysis for optimal solutions.

II, Va

CHEM 51A. Organic Chemistry. 4 Units.
Fundamental concepts relating to carbon compounds with emphasis on structural theory and the nature of chemical bonding, stereochemistry, reaction mechanisms, and stereo, physical, and chemical properties of the principal classes of carbon compounds.

Corequisite: CHEM M52LA or CHEM H52LA for Chemistry majors only or completion of or concurrent enrollment in CHEM 1LD for other majors.
Prerequisite: (CHEM 1C and CHEM 1LC) or (CHEM H2C and CHEM H2LC) or (CHEM M3C and CHEM M3LC). CHEM 1C and CHEM 1LC with a grade of C- or better. CHEM H2C and CHEM H2LC with a grade of C- or better. CHEM M3C and CHEM M3LC with a grade of C- or better.

Overlaps with CHEM H52A.

Restriction: Majors in the Schools of Physical Sciences, Biological Sciences, and Engineering, and majors in Nursing Science, Pharmaceutical Sciences, Public Health Sciences, and Undecided/Undeclared students have first consideration for enrollment.

CHEM 51B. Organic Chemistry. 4 Units.
Fundamental concepts relating to carbon compounds with emphasis on structural theory and the nature of chemical bonding, stereochemistry, reaction mechanisms, and stereo, physical, and chemical properties of the principal classes of carbon compounds.

Corequisite: CHEM M52LB for Chemistry majors or CHEM H52LB or CHEM 51LB for other majors.
Prerequisite: CHEM 51A and (CHEM 1LD or CHEM M52LA or CHEM H52LA). CHEM 51A with a grade of C- or better. CHEM 1LD with a grade of C- or better. CHEM M52LA or CHEM H52LA with a grade of C- or better.

Overlaps with CHEM H52B.

Restriction: Majors in the Schools of Physical Sciences, Biological Sciences, and Engineering, and majors in Nursing Science, Pharmaceutical Sciences, Public Health Sciences, and Undecided/Undeclared students have first consideration for enrollment.
CHEM 51C. Organic Chemistry. 4 Units.
Fundamental concepts relating to carbon compounds with emphasis on structural theory and the nature of chemical bonding, stereochemistry, reaction mechanisms, and stereochemical, physical, and chemical properties of the principal classes of carbon compounds.

Corequisite: CHEM M52LC for Chemistry majors or CHEM H52LC or CHEM 51LC for other majors.
Prerequisite: CHEM 51B and (CHEM 51LB or CHEM M52LB or CHEM H52LB). CHEM 51B with a grade of C- or better. CHEM 51LB with a grade of C- or better. CHEM M52LB with a grade of C- or better. CHEM H52LB with a grade of C- or better.

Overlaps with CHEM H52C.

Restriction: Majors in the Schools of Physical Sciences, Biological Sciences, and Engineering, and majors in Nursing Science, Pharmaceutical Sciences, Public Health Sciences, and Undecided/Undeclared students have first consideration for enrollment.

CHEM 51LB. Organic Chemistry Laboratory. 2 Units.
Modern techniques of organic chemistry, using selected experiments to illustrate topics introduced in CHEM 51A-CHEM 51B-CHEM 51C. Course may be offered online. Materials fee.

Corequisite: CHEM 51B.
Prerequisite: CHEM 51A and CHEM 1LD. CHEM 51A with a grade of C- or better. CHEM 1LD with a grade of C- or better.

Overlaps with CHEM H52LA, CHEM M52LA.

Restriction: Majors in the Schools of Physical Sciences, Biological Sciences, and Engineering, and majors in Nursing Science, Pharmaceutical Sciences, Public Health Sciences, and Undecided/Undeclared students have first consideration for enrollment.

CHEM 51LC. Organic Chemistry Laboratory. 2 Units.
Modern techniques of organic chemistry, using selected experiments to illustrate topics introduced in CHEM 51A-B-C. Course may be offered online. Materials fee.

Corequisite: CHEM 51C.
Prerequisite: CHEM 51B and CHEM 51LB. CHEM 51B with a grade of C- or better. CHEM 51LB with a grade of C- or better.

Overlaps with CHEM H52LB, CHEM M52LB.

Restriction: Majors in the Schools of Physical Sciences, Biological Sciences, and Engineering, and majors in Nursing Science, Pharmaceutical Sciences, Public Health Sciences, and Undecided/Undeclared students have first consideration for enrollment.

CHEM 51LD. Organic Chemistry Laboratory. 2 Units.
Modern techniques of organic chemistry using selected experiments to illustrate topics introduced in CHEM 51A-CHEM 51B-CHEM 51C. Course may be offered online. Materials fee.

Prerequisite: CHEM 51C and CHEM 51LC. CHEM 51C with a grade of C- or better. CHEM 51LC with a grade of C- or better.

Overlaps with CHEM H52LC.

Restriction: Majors in the Schools of Physical Sciences, Biological Sciences, and Engineering, and majors in Nursing Science, Pharmaceutical Sciences, Public Health Sciences, and Undecided/Undeclared students have first consideration for enrollment.

CHEM H52A. Honors Organic Chemistry. 4 Units.
Fundamental concepts of the chemistry of carbon compounds. Structural, physical, and chemical properties of the principal classes of carbon compounds.

Corequisite: CHEM H52LA.
Prerequisite: (CHEM 1A and CHEM 1B and CHEM 1C) or (CHEM H2A and CHEM H2B and CHEM H2C).

Overlaps with CHEM 51A.

CHEM H52B. Honors Organic Chemistry. 4 Units.
Fundamental concepts of the chemistry of carbon compounds. Structural, physical, and chemical properties of the principal classes of carbon compounds.

Corequisite: CHEM H52LB.
Prerequisite: CHEM H52A and CHEM H52LA. CHEM H52A with a grade of C or better. CHEM H52LA with a grade of C or better.
CHEM H52C. Honors Organic Chemistry. 4 Units.
Fundamental concepts of the chemistry of carbon compounds. Structural, physical, and chemical properties of the principal classes of carbon compounds.

Corequisite: CHEM H52LC.
Prerequisite: CHEM H52B. CHEM H52B with a grade of C or better.

Overlaps with CHEM 51C.

CHEM H52LA. Honors Organic Chemistry Laboratory. 3 Units.
Fundamental techniques of modern experimental organic chemistry. Materials fee.

Corequisite: CHEM 51A.
Prerequisite: (CHEM 1C or CHEM H2C or CHEM M3C) and (CHEM M3LC or CHEM H2LC or CHEM 1LD).

Overlaps with CHEM 51LB, CHEM M52LA.

Restriction: Campuswide Honors Program students only.

CHEM H52LB. Honors Organic Chemistry Laboratory. 3 Units.
Fundamental techniques of modern experimental organic chemistry. Materials fee.

Corequisite: CHEM 51B.
Prerequisite: CHEM 51A and CHEM H52LA. CHEM 51A with a grade of C- or better. CHEM H52LA with a grade of C- or better.

Overlaps with CHEM M52LB, CHEM 51LC.

CHEM H52LC. Honors Organic Chemistry Laboratory. 3 Units.
Fundamental techniques of modern experimental organic chemistry. Materials fee.

Corequisite: CHEM 51C.
Prerequisite: CHEM 51B and CHEM H52LB. CHEM 51B with a grade of C- or better. CHEM H52LB with a grade of C- or better.

Overlaps with CHEM 51LD, CHEM M52LC.

CHEM M52LA. Majors Organic Chemistry Laboratory. 3 Units.
Modern techniques of organic chemistry, using selected experiments to illustrate topics introduced in CHEM 51A-B-C. Materials fee.

Corequisite: CHEM 51A.
Prerequisite: (CHEM 1C or CHEM H2C or CHEM M3C) and (CHEM H2LC or CHEM M3LC or CHEM 1LD).

Overlaps with CHEM H52LA, CHEM 51LB.

Restriction: Chemistry majors only.

CHEM M52LB. Majors Organic Chemistry Laboratory. 3 Units.
Modern techniques of organic chemistry, using selected experiments to illustrate topics introduced in CHEM 51A-B-C. Materials fee.

Corequisite: CHEM 51B.
Prerequisite: CHEM 51A and CHEM M52LA. CHEM 51A with a grade of C- or better. CHEM M52LA with a grade of C- or better.

Overlaps with CHEM H52LB, CHEM 51LC.

Restriction: Chemistry majors only.

CHEM M52LC. Majors Organic Chemistry Laboratory. 3 Units.
Modern techniques of organic chemistry, using selected experiments to illustrate topics introduced in CHEM 51A-B-C. Materials fee.

Corequisite: CHEM 51C.
Prerequisite: CHEM 51B and CHEM M52LB. CHEM 51B with a grade of C- or better. CHEM M52LB with a grade of C- or better.

Overlaps with CHEM H52LC, CHEM 51LD.

Restriction: Chemistry majors only.
CHEM H90. The Idiom and Practice of Science. 4 Units.
A series of fundamental and applied problems in the chemical sciences are addressed. Topics may include the periodic table, electronic structure of atoms, chemical bonding, molecular structure, thermodynamics, and kinetics, with applications to energy and the environment, and/or biochemistry.

Restriction: Campuswide Honors Program students only.

(II, Va)

CHEM 107. Inorganic Chemistry. 4 Units.
Introduction to modern inorganic chemistry. Principles of structure, bonding, and chemical reactivity with application to compounds of the main group and transition elements, including organometallic chemistry.

Prerequisite: CHEM 51C or CHEM H52C.

Restriction: Chemistry majors have first consideration for enrollment.

CHEM 107L. Inorganic Chemistry Laboratory. 3 Units.
Modern techniques of inorganic and organometallic chemistry including experience with glove box, Schlenk line, and vacuum line methods. Materials fee.

Prerequisite: CHEM 107.

Restriction: Chemistry majors have first consideration for enrollment.

CHEM 125. Advanced Organic Chemistry. 4 Units.
Rapid-paced comprehensive treatment of organic chemistry. Focuses on molecular structure, reactivity, stability, scope and mechanisms of organic reactions. Topics include: structure and bonding; theoretical organic chemistry; acidity and basicity; reactive intermediates; pericyclic reactions; stereochemistry; organic synthesis; natural products; organic photochemistry.

Prerequisite: CHEM 51C.

Restriction: Chemistry majors have first consideration for enrollment.

CHEM 127. Inorganic Chemistry II. 4 Units.
Advanced treatment of selected fundamental topics in inorganic chemistry, building on material presented in Chemistry 107. Molecular symmetry with applications to electronic structure and spectroscopy. Reaction kinetics and mechanisms; inorganic synthesis and catalysis; bioinorganic chemistry.

Prerequisite: CHEM 107.

Restriction: Chemistry majors have first consideration for enrollment.

CHEM 128. Introduction to Chemical Biology. 4 Units.
Introduction to the basic principles of chemical biology: structures and reactivity; chemical mechanisms of enzyme catalysis; chemistry of signalling, biosynthesis, and metabolic pathways.

Prerequisite: (CHEM 1A and CHEM 1B and (CHEM 1C or CHEM H2C or CHEM M3C)) and (CHEM 51A and CHEM 51B and CHEM 51C).

Restriction: Chemistry majors have first consideration for enrollment.

CHEM 128L. Introduction to Chemical Biology Laboratory Techniques. 3 Units.
Introduction to the basic laboratory techniques of chemical biology: electrophoresis, plasmid preparation, PCR, protein expression, isolation, and kinetics. Materials fee.

Corequisite: CHEM 128.

Restriction: Chemistry majors have first consideration for enrollment.

CHEM 131A. Quantum Principles. 4 Units.
Principles of quantum chemistry with applications to nuclear motions and the electronic structure of the hydrogen atom.

Corequisite: (CHEM 5 or CBEMS 45C) and (CBEMS 45C or PHYSICS 7E).

Prerequisite: (CHEM 1C or CHEM M3C or CHEM H2C) and MATH 2D and PHYSICS 7D.

Restriction: Chemistry majors have first consideration for enrollment.
CHEM 131B. Molecular Structure and Elementary Statistical Mechanics. 4 Units.
Principles of quantum mechanics with application to the elements of atomic structure and energy levels, diatomic molecular spectroscopy and structure determination, and chemical bonding in simple molecules.
Prerequisite: CHEM 131A and (PHYSICS 7E or CBEMS 45C).
Restriction: Chemistry majors have first consideration for enrollment.

CHEM 131C. Thermodynamics and Chemical Dynamics. 4 Units.
Prerequisite: CHEM 131B.
Restriction: Chemistry majors have first consideration for enrollment.

CHEM 137. Computational Chemistry. 4 Units.
Short introduction to programming languages and to representative algorithms employed in chemical research. Students have the opportunity to devise and employ their own codes and also to employ codes which are widely used in various fields of chemistry. Materials fee.
Corequisite: CHEM 131B.
Prerequisite: CHEM 51C and CHEM 131A.
Restriction: Chemistry majors have first consideration for enrollment.

CHEM 138. Introduction to Computational Organic Chemistry. 4 Units.
An introduction to the use of computational chemistry to investigate reaction mechanisms, to calculate structures, and to predict properties of molecules. Students have the opportunity to perform calculations employing computational methods which are widely used in various fields of chemistry. Materials fee.
Prerequisite: CHEM 51C.
Restriction: Chemistry majors have first consideration for enrollment.

CHEM 152. Advanced Analytical Chemistry. 5 Units.
In-depth treatment of modern instrumental methods for quantitative analysis of real samples and basic principles of instrument design. Laboratory experiments using spectroscopic, chromatographic, mass spectrometric, and other instrumental methods. Materials fee.
Prerequisite: (CHEM 1C or CHEM M3C) and CHEM M3LC.
Restriction: Chemistry majors have first consideration for enrollment.

CHEM 153. Physical Chemistry Laboratory. 4 Units.
Introduction to the modern experimental approaches and software tools used in spectroscopy, kinetics, electrochemistry, and other physical chemistry experiments. Basics of interfacing with instruments using LabView. Materials fee.
Corequisite: CHEM 131C.
Prerequisite: CHEM 1C OR (CHEM M3C and CHEM M3LC) and CHEM 131B.
Restriction: Chemistry majors have first consideration for enrollment.

CHEM 156. Advanced Laboratory in Chemistry and Synthesis of Materials. 4 Units.
Synthesis and characterization of organic and inorganic materials including polymers and oxides. Techniques include electron and scanning probe microscopy, gel permeation chromatography, X-ray diffraction, porosimetry, and thermal analysis. Materials fee.
Prerequisite: CHEM 131B or ENGR 54 or PHRMSCI 171.
Same as CBEMS 160.
Restriction: Chemistry majors and Materials Science Engineering majors have first consideration for enrollment.

CHEM 160. Organic Synthesis Laboratory. 4 Units.
Modern experimental techniques in organic synthesis including experience with thin-layer chromatography, liquid chromatography, and gas chromatography. Modern methods of structure elucidation including FT NMR are employed in the characterization of products. Materials fee.
Prerequisite: CHEM 51C and (CHEM 51LC or CHEM H52LC or CHEM M52LC).
Restriction: Chemistry majors have first consideration for enrollment.
CHEM 170. Radioisotope Techniques. 4 Units.
Basic theory and practice of production, separation, safe handling, counting, applications of radioactive isotopes with emphasis on applications in chemistry, biology, and medicine. Materials fee.
Prerequisite: (CHEM 1C or CHEM M3C or CHEM H2C) and (CHEM 1LC or CHEM M3LC or CHEM H2LC).
Restriction: Chemistry majors have first consideration for enrollment.

CHEM 177. Medicinal Chemistry. 4 Units.
An introduction of the basics of drug activity and mechanisms. Strategies used to identify lead compounds such as natural product chemistry, combinatorial chemistry, molecular modeling, and high-through put screening. Relationship of molecular structure to pharmacological activity.
Prerequisite: CHEM 51A and CHEM 51B and CHEM 51C and (BIO SCI 98 or CHEM 128).
Same as PHRMSCI 177.
Restriction: Pharmaceutical Science majors have first consideration for enrollment.

CHEM 177L. Medicinal Chemistry Laboratory. 2 Units.
An introduction of the basics of drug activity and mechanisms. Strategies used to identify lead compounds such as natural product chemistry, combinatorial chemistry, molecular modeling, and high-through put screening. Relationship of molecular structure to pharmacological activity. Materials fee.
Corequisite: PHRMSCI 177.
Prerequisite: CHEM 51A and CHEM 51B and CHEM 51C and BIO SCI 100 and (BIO SCI 98 or CHEM 128).
Same as PHRMSCI 177L.
Restriction: Pharmaceutical Science majors have first consideration for enrollment.

CHEM 177LW. Medicinal Chemistry Lab. 2 Units.
An introduction of the basics of drug activity and mechanisms. Strategies used to identify lead compounds such as natural product chemistry, combinatorial chemistry, molecular modeling, and high-through put screening. Relationship of molecular structure to pharmacological activity.
Corequisite: CHEM 177.
Prerequisite: CHEM 51A and CHEM 51B and CHEM 51C and (BIO SCI 98 or CHEM 128) and BIO SCI 100.
Same as PHRMSCI 177LW.

CHEM 180. Undergraduate Research. 4 Units.
Research for credit arranged with a faculty member to sponsor and supervise work. Student time commitment of 10 to 15 hours per week is expected, and a written research report is required at the end of each quarter of enrollment.
Repeatability: May be repeated for credit unlimited times.

CHEM H180A. Honors Research in Chemistry. 4 Units.
Undergraduate honors research in Chemistry. A student time commitment of 10-15 hours per week is required.
Restriction: Chemistry Honors program students and Chemistry majors participating in the Campuswide Honors Program only.

CHEM H180B. Honors Research in Chemistry. 4 Units.
Undergraduate honors research in Chemistry. A student time commitment of 10-15 hours per week is required.
Prerequisite: CHEM H180A.
Restriction: Campuswide Honors Program students only.

CHEM H180C. Honors Research in Chemistry. 4 Units.
Undergraduate honors research in Chemistry. A student time commitment of 10-15 hours per week is required.
Prerequisite: CHEM H180B.
Restriction: Chemistry majors participating in the Campuswide Honors Program students only. Chemistry Honors Program students only.
CHEM H181W. Honors Seminar in Chemistry. 2 Units.
Students will receive guidance in the preparation of oral and written research presentations. A written thesis will be prepared and a formal research seminar will be presented.

Corequisite: CHEM H180C.
Prerequisite: CHEM H180A and CHEM H180B. Satisfactory completion of the Lower-Division Writing requirement.

CHEM 191. Chemistry Outreach Program. 2 Units.
Involves intensive participation in the UCI Chemistry Outreach Program, which performs Chemistry demonstrations at local high schools.

Grading Option: Pass/no pass only.
Repeatability: May be taken for credit 6 times.

CHEM 192. Tutoring in Chemistry. 2 Units.
Enrollment limited to participants in the Chemistry Peer Tutoring Program.

Repeatability: May be taken for credit 9 times.
Restriction: The first eight may be taken for a letter grade. The remaining ten units must be taken Pass/Not Pass only. NOTE: No more than eight units may be counted toward the 180 units required for graduation. Satisfies no degree requirement other than contribution to the 180-unit total.

CHEM 193. Research Methods. 4 Units.
Explores tools of inquiry for developing and implementing science research projects. Students undertake independent projects requiring data collection, analysis, and modeling, and the organization and presentation of results. Additional topics include ethical issues and role of scientific literature.

Prerequisite: BIO SCI 14 or PHY SCI 5.
Same as BIO SCI 108, PHYSICS 193.

CHEM 197. Professional Internship. 4 Units.
Internship program that provides students with opportunity to develop professional skills necessary for competitive placement in their chosen chemical inspired industry. Students gain new and field-specific skills outside the classroom while participating in a supervised internship totaling 100 hours.

Prerequisite: Enrollment requires completion of an application form. Student selection is made by a selection committee.
Restriction: Upper-division students only.

CHEM 199. Independent Study in Chemistry. 1-4 Units.
Independent research with Chemistry faculty. Student time commitment of three to four hours per week per unit is expected, and a written report on the independent study is required at the end of each quarter of enrollment.

Repeatability: Unlimited as topics vary.

CHEM 200. Conduct of Research . 2 Units.
Introduces new graduate students to ethical conduct of scientific research, mentoring, and current research in the Department of chemistry.

Repeatability: May be taken for credit 2 times.

CHEM 201. Organic Reaction Mechanisms I. 4 Units.
Advanced treatment of basic mechanistic principles of modern organic chemistry. Topics include molecular orbital theory, orbital symmetry control of organic reactions, aromaticity, carbonium ion chemistry, free radical chemistry, the chemistry of carbenes and carbonions, photochemistry, electrophilic substitutions, aromatic chemistry.

Prerequisite: CHEM 131A and CHEM 131B and CHEM 131C.

CHEM 202. Organic Reaction Mechanisms II. 4 Units.
Topics include more in-depth treatment of mechanistic concepts, kinetics, conformational analysis, computational methods, stereoelectronics, and both solution and enzymatic catalysis.

Prerequisite: CHEM 201.
CHEM 203. Organic Spectroscopy. 4 Units.
Modern methods used in structure determination of organic molecules. Topics include mass spectrometry; ultraviolet, chiroptical, infrared, and nuclear magnetic resonance spectroscopy.
Prerequisite: (CHEM 51A and CHEM 51B and CHEM 51C) or (CHEM H52A and CHEM H52B and CHEM H52C).
Restriction: Graduate students only.

CHEM 204. Organic Synthesis I. 4 Units.
Fundamentals of modern synthetic organic chemistry will be developed. Major emphasis is on carbon-carbon bond forming methodology. Topics include carbonyl annelations, cycloadditions, sigmatropic rearrangements, and organometallic methods.

CHEM 205. Organic Synthesis II. 4 Units.
Fundamentals of modern synthetic organic chemistry will be developed. Major emphasis this quarter is on natural product total synthesis and retrosynthetic (antithetic) analysis.
Prerequisite: CHEM 204.

CHEM 206. Laboratory Skills. 4-6 Units.
Introduces students to a variety of practical laboratory techniques, including lock-in, boxcar, coincidence counting, noise filtering, PID control, properties of common transducers, computer interfacing to instruments, vacuum technology, laboratory safety, basic mechanical design, and shop skills. Materials fee.
Same as PHYSICS 206.
Concurrent with PHYSICS 106.

CHEM 207. Chemistry for Physicists. 4 Units.
Introduction to fundamental concepts in molecular structure and reactivity: theory of bonding, valence and molecular orbitals; structure and reactivity in inorganic chemistry; elements in molecular group theory; nomenclature in organic chemistry; and survey of macromolecules.
Same as PHYSICS 207.

CHEM 208. Mathematics for Chemists. 4 Units.
Applications of mathematics to physical and chemical problems. Calculus of special functions, complex variables and vectors; linear vector spaces and eigenvalue problems. Differential equations.
Same as PHYSICS 208.

CHEM 209. Physics for Chemists. 4 Units.
An introduction to concepts of electrodynamics with special emphasis on applications to chemistry: vector analysis, electrostatics, magnetostatics, electrodynamics, electromagnetic waves, classical radiation theory, special relativity.

CHEM 213. Chemical Kinetics. 4 Units.
Surveys gas phase and organic reaction mechanisms and their relationship to kinetic rate laws; treats the basic theory of elementary reaction rates. A brief presentation of modern cross-sectional kinetics is included.
Prerequisite: CHEM 131A and CHEM 131B and CHEM 131C.

CHEM 215. Inorganic Chemistry I. 4 Units.
Principles of modern inorganic chemistry with applications to chemical systems of current interest. Inorganic phenomena are organized into general patterns which rationalize observed structures, stabilities, and physical properties.
Prerequisite: CHEM 107 and (CHEM 131A and CHEM 131B and CHEM 131C).
Restriction: Graduate students only.

CHEM 216. Organometallic Chemistry. 4 Units.
Synthesis and reactivity of organometallic complexes with an emphasis on mechanisms. Topics include bonding and fluxional properties; metal-carbon single and multiple bonds; metal 8-complexes. Applications to homogenous catalysis and organic synthesis are incorporated throughout the course.
Prerequisite: CHEM 107 or CHEM 215.
CHEM 217. Physical Inorganic Chemistry. 4 Units.
General principles of the spectroscopy and magnetism of inorganic compounds. Characterization of inorganic complexes by infrared, near-infrared, visible, ultraviolet, NMR, EPR, EXAFS, and Mossbauer spectroscopies. Some necessary group theory developed.
Prerequisite: CHEM 215.

CHEM 218. Metallobiochemistry. 4 Units.
A review of the biochemistry of metallic elements emphasizing: methods for studying metals in biological systems; the chemical basis for nature's exploitation of specific elements; structures of active sites; mechanisms; solid-state structures and devices; metals in medicine.
Prerequisite: CHEM 131A and CHEM 131B and CHEM 131C.

CHEM 219. Chemical Biology. 4 Units.
A survey of the organic chemistry underlying biological function. Introduction to chemical genetics, receptor-ligand interactions, small molecule agonists and antagonists, combinatorial synthesis, high throughput assays, molecular evolution, protein and small molecule design.
Restriction: Graduate students only.

CHEM 220. Bioorganic Chemistry. 4 Units.
Structure and function of biologically important macromolecules. Introduction to nucleic acid, protein structure, principles of molecular recognition, enzyme function, modelling, and engineering.
Prerequisite: (CHEM 51A and CHEM 51B and CHEM 51C).

CHEM 221A. Fundamentals of Molecular Biophysics. 4 Units.
An overview of the principles and concepts in molecular biophysics. Topics covered include energy and entropy in biology, non-equilibrium reaction kinetics, random walks and molecular diffusion, molecular forces in biology.
Prerequisite: Undergraduate courses in physical chemistry and biochemistry.
Repeatability: May be taken for credit 3 times.

CHEM 223. Biological Macromolecules. 4 Units.
Introduction to nucleic acid and protein structure, dynamics, and function. Topics include analytical methods, molecular evolution, folding, and catalysis.
Same as PHRMSCI 223.

CHEM 224. Molecular and Cellular Biophotonics. 4 Units.
Principles underlying the application of photonic technologies to biomolecular and cellular systems. Sample technologies Optical Tweezers, Linear and Nonlinear Optical Microscopy and Fluorescence Lifetime and Correlation Methods and their use to investigate emergent problems in Molecular, Cellular, and Developmental Biology.
(Design units: 0)
Same as CBEMS 224.
Restriction: Graduate students only.

CHEM 225. Polymer Chemistry: Synthesis and Characterization of Polymers. 4 Units.
Prerequisite: Undergraduate courses in organic and physical chemistry.

CHEM 228. Electromagnetism. 4 Units.
Maxwell's equations, electrodynamics, electromagnetic waves and radiation, wave propagation in media, interference and quantum optics, coherent and incoherent radiation, with practical applications in interferometry, lasers, waveguides, and optical instrumentation.
Same as PHYSICS 228.

CHEM 229A. Computational Methods. 4 Units.
Mathematical and numerical analysis using Mathematica and C programming, as applied to problems in physical science.
Same as PHYSICS 229A.
Concurrent with PHYSICS 100.
CHEM 229B. Computational Methods. 4 Units.
Mathematical and numerical analysis using Mathematica and C programming, as applied to problems in physical science.

Same as PHYSICS 229B.

CHEM 230. Classical Mechanics and Electromagnetic Theory. 4 Units.
Fundamentals of classical mechanics and electromagnetic theory are developed with specific application to molecular systems. Newtonian, Lagrangian, and Hamiltonian mechanics are developed. Boundary value problems in electrostatics are investigated. Multipole expansion and macroscopic media are discussed from a molecular viewpoint.

Prerequisite: CHEM 131A and CHEM 131B and CHEM 131C.

CHEM 231A. Fundamentals of Quantum Mechanics. 4 Units.
The postulates of quantum mechanics are discussed and applied to a variety of model problems.

Prerequisite: CHEM 131A and CHEM 131B and CHEM 131C.

CHEM 231B. Applications of Quantum Mechanics. 4 Units.
Approximate methods for solving atomic and molecular structure problems are developed, and the application of quantum mechanics to spectroscopy is introduced.

Prerequisite: CHEM 231A.

CHEM 231C. Molecular Spectroscopy. 4 Units.
Theory and techniques of spectroscopy as used for the study of molecular and condensed phase properties. Coherent time domain spectroscopies are covered.

Prerequisite: CHEM 231B.

CHEM 232A. Thermodynamics and Introduction to Statistical Mechanics. 4 Units.
A detailed discussion from an advanced point of view of the principles of classical thermodynamics. The fundamentals of statistical mechanics. Topics include an introduction to ensemble theory, Boltzmann statistics, classical statistical mechanics, and the statistical mechanics of ideal gas systems.

Prerequisite: CHEM 131A and CHEM 131B and CHEM 131C.

CHEM 232B. Advanced Topics in Statistical Mechanics. 4 Units.
Continued discussion of the principles of statistical mechanics. Applications to topics of chemical interest including imperfect gases, liquids, solutions, and crystals. Modern techniques such as the use of autocorrelation function methods.

Prerequisite: CHEM 232A.

CHEM 232C. Non-Equilibrium Statistical Mechanics. 4 Units.
Phenomenology of material processes, including: kinetic theories of transport and continuum, linear response theory, critical phenomena of phase transition, self-assembly, and nucleation.

CHEM 233. Nuclear and Radiochemistry. 4 Units.
Advanced treatment of nuclear structure, nuclear reactions, and radioactive-decay processes. Introduction to nuclear activation analysis, isotope effects, radiation chemistry, hot-atom chemistry, nuclear age-dating methods, nuclear reactors, and nuclear power.

Same as CBEMS 233.
Concurrent with CBEMS 133.

CHEM 234. Advanced Chemical Kinetics. 4 Units.
Topics and format vary.

Prerequisite: CHEM 213.
Repeatability: Unlimited as topics vary.

CHEM 235. Molecular Quantum Mechanics. 4 Units.
Application of quantum mechanics to calculation of molecular properties. Electronic structure of molecules.

Prerequisite: CHEM 231A.
CHEM 236. Forces Between Molecules. 4 Units.
The nature and effects of non-covalent interactions between molecular systems. The focus is on properties of these interactions in condensed phases: macromolecular systems; particle-surface interactions.

CHEM 237. Mathematical Methods in Chemistry. 4 Units.
Survey of essential math methods in chemistry. Topics may include series and limits, complex analysis, Fourier and Laplace transforms, linear algebra and operators (theory and algorithms), differential equations, and probability concepts for stochastic processes.

CHEM 241. Current Issues Related to Tropospheric and Stratospheric Processes. 4 Units.
Examination of current issues related to the atmosphere, including energy usage; toxicology; effects on humans, forests, plants, and ecosystems; particulate matter (PM10); combustion; modeling and meteorology; airborne toxic chemicals and risk assessment; application of science to development of public policies.

Prerequisite: ENGRMAE 164 or ENGRMAE 261 or CHEM 245 or EARTHSS 240.
Same as ENGRMAE 260.

CHEM 242A. Physical and Geometrical Optics. 4 Units.
Focuses on the practical aspects of optics and optical engineering, starting at the fundamentals. Topics include geometrical optics, ray tracing, polarization optics, interferometers, and diffractive optics.

Same as CBEMS 242A.
Restriction: Graduate students only.
Concurrent with PHYSICS 134A.

CHEM 242B. Applied Optics. 4 Units.
Focuses on the treatment of a wide variety of tools and techniques used in optics, particularly in research. Subjects include an introduction to lasers, optical detection, coherent optics, spectroscopic techniques, and selected topics corresponding to the interest of the students.

Prerequisite: CHEM 242A.
Same as CBEMS 242B.

CHEM 243. Advanced Instrumental Analysis. 4 Units.
Theory and applications of modern advanced instrumental methods of analysis. Includes data acquisition, storage, retrieval and analysis; Fourier transform methods; vacuum technologies; magnetic sector; quadrupole and ion trap mass spectrometry; surface science spectroscopic methods; lasers and optics.

Prerequisite: CHEM 152 and (CHEM 131A and CHEM 131B and CHEM 131C).

CHEM 245. Atmospheric Chemistry of the Natural and Polluted Troposphere. 4 Units.
Kinetics, mechanisms and photochemistry of tropospheric reactions in the gas, liquid, and solid phases, and methods of analysis. Chemistry of photochemical oxidant formation and acid deposition, and applications to control strategies. Chemistry of toxic chemicals and indoor air pollution.

Prerequisite: CHEM 131A and CHEM 131B and CHEM 131C.

CHEM 246. Separations and Chromatography. 4 Units.
Introduction to modern separation techniques such as gas chromatography, high-performance liquid chromatography, supercritical fluid chromatography, capillary electrophoresis, and field flow fractionation. Applications of these separation strategies are discussed.

CHEM 247. Current Problems in Analytical Chemistry. 4 Units.
Surveys current research challenges in analytical chemistry. Topics include electrochemistry, chromatography, spectroscopy, and mass spectrometry.

CHEM 248. Electrochemistry. 4 Units.
Fundamentals of electrochemistry including thermodynamics and the electrochemical potential, charge transfer kinetics, and mass transfer. Methods based on controlled potential and controlled current are described; the effects of slow heterogeneous kinetics and the perturbation caused by homogeneous chemistry are discussed.

CHEM 249. Analytical Spectroscopy. 4 Units.
Advanced treatment of spectroscopic techniques and instrumentation. Atomic and molecular absorption, emission, and scattering processes and their application to quantitative chemical analysis are outlined. Puts different spectroscopic techniques in perspective and demonstrates most appropriate applications to analytical problems.
CHEM 251. Special Topics in Organic Chemistry. 1-4 Units.
Advanced topics in organic chemistry.
Repeatability: Unlimited as topics vary.

CHEM 252. Special Topics in Physical Chemistry. 1-4 Units.
Advanced topics in physical chemistry. Materials fee.
Repeatability: Unlimited as topics vary.

CHEM 253. Special Topics in Inorganic Chemistry. 4 Units.
Advanced topics in inorganic chemistry.
Prerequisite: CHEM 215.
Repeatability: Unlimited as topics vary.

CHEM 254. Special Topics in Computational and Theoretical Chemistry. 4 Units.
Subjects covered vary from year to year.
Repeatability: Unlimited as topics vary.

CHEM 256. Materials Chemistry. 4 Units.
An introduction to crystalline solids, descriptive crystal chemistry, solid-state synthesis and characterization techniques, x-ray and electron diffraction, phase diagrams, electronic band structure of extended solids, semi conductors, and nanoscale inorganic materials.

CHEM 266. Current Topics in Chemical and Materials Physics. 1 Unit.
The subjects covered vary from year to year. Connection between fundamental principles and implementations in practice in science, industry, and technology.
Repeatability: May be repeated for credit unlimited times.
Same as PHYSICS 266.

CHEM 271. Structural X-Ray Crystallography. 4 Units.
The principles and practice of the determination of structures by single crystal X-Ray diffraction techniques. Crystal symmetry, diffraction, structure solution and refinement. Opportunities for hands-on experience in structure determination.
Prerequisite: CHEM 131A and CHEM 131B and CHEM 131C.

CHEM 272. Industrial Chemistry. 4 Units.
Scientific, economic environmental aspects of the top 50 industrially produced chemicals, including: how they are obtained, and used; present and future sources of energy and raw materials, and the effects of chemical manufacturing on the price structure of our economy.

CHEM 273. Technical Communication Skills. 2 Units.
Development of effective communication skills, oral and written presentations, through examples and practice.
Grading Option: Satisfactory/unsatisfactory only.
Same as PHYSICS 273.

CHEM 280. Research. 2-12 Units.
Supervised original research toward the preparation of a Ph.D dissertation or M.S. thesis.
Repeatability: May be repeated for credit unlimited times.
Restriction: Graduate students only.

CHEM 290. Seminar. 1 Unit.
Weekly seminars and discussions on general and varied topics of current interest in chemistry.
Repeatability: May be repeated for credit unlimited times.
Restriction: Graduate students only.
CHEM 291. Research Seminar. 4 Units.
Detailed discussion of research problems of current interest in the Department. Format, content, and frequency of the course are variable.

Repeatability: Unlimited as topics vary.

Restriction: Graduate students only.

CHEM 292. Graduate Symposium. 2 Units.
Students present public seminars on literature-based research topics in contemporary chemistry. Topics to be chosen by student and approved by instructor.

Repeatability: May be repeated for credit unlimited times.

CHEM 299. Independent Study. 1-4 Units.
Independent research with Chemistry faculty.

Repeatability: May be repeated for credit unlimited times.

Restriction: Graduate students only.

CHEM 399. University Teaching. 1-4 Units.
Required of and limited to Teaching Assistants.

Grading Option: Satisfactory/unsatisfactory only.

Repeatability: May be repeated for credit unlimited times.

Earth System Science Courses

EARTHSS 1. Introduction to Earth System Science. 4 Units.
Covers the origin and evolution of the Earth, its atmosphere, and oceans, from the perspective of biogeochemical cycles, energy use, and human impacts on the Earth system.

(II, Va)

EARTHSS 3. Oceanography. 4 Units.
Examines circulation of the world oceans and ocean chemistry as it relates to river, hydrothermal vent, and atmospheric inputs. Geological features, the wide variety of biological organisms, and global climate changes, such as greenhouse warming, are also studied.

(II, Va)

EARTHSS 5. The Atmosphere. 4 Units.
The composition and circulation of the atmosphere with a focus on explaining the fundamentals of weather and climate. Topics include solar and terrestrial radiation, clouds, and weather patterns.

(II, Va)

EARTHSS 7. Physical Geology. 4 Units.
Introduction to Earth materials and processes. Topics include rocks and minerals, plate tectonics, volcanoes, earthquakes, Earth surface processes, Earth resources, geologic time, and Earth history. Laboratory work involves hands-on study of geologic materials, maps, and exercises pertaining to geologic processes. Materials fee.

(II, Va)

EARTHSS 11. Climate Change and Policy. 4 Units.
Develops an understanding of the physical basis behind global climate change; examines how human activities cause it, looks to future rates and impacts of global warming, and reviews the international conventions, protocols, and scientific assessments of climate change.

(II)

EARTHSS 13. Global-Change Biology. 4 Units.
Addresses ways in which humans are altering the global environment, with consequences for the ecology of animals, plants, and microbes. Discussion on how these biologically oriented questions relate to human society, politics, and the economy.

Same as BIO SCI 9K.

(II)
EARTHSS 15. Introduction to Global Climate Change. 4 Units.
Introduction of scientific, technological, environmental, economic, and social aspects underlying the threat and understanding of global climate change. Human and natural drivers of climate. Impacts of climate on natural, managed, and human systems, including their vulnerability and ability to adapt.
(II and (VA or VIII)).

EARTHSS 17. Hurricanes, Tsunamis, and other Catastrophes. 4 Units.
Introduction to the basic science and state of predictability of various natural catastrophic events including earthquakes, volcanic eruptions, tsunamis, landslides, floods, hurricanes, fires, and asteroid impacts and their interactions and implications with human society in the U.S. and globally.
(II and (VA or VIII)).

EARTHSS 19. Introduction to Modeling the Earth System. 4 Units.
Simulate the Earth's system using computer models. Covers the interaction of the air, land, and ocean, and explores how changes to one part of the environment affect the complete Earth system. Utilizes technological tools to understand scientific principles.
(II, Vb)

EARTHSS 21. On Thin Ice: Climate Change and the Cryosphere. 4 Units.
Introduction of the basic science that governs the cryosphere and its interaction with the climate system. Covers some of the significant economic, sociological, and political consequences of the recent melting of the cryosphere driven by anthropogenic climate change.
(II and (VA or VIII)).

EARTHSS 23. Air Pollution: From Urban Smog to Global Change. 4 Units.
Air pollution occurs on regional to global scales. A wide range of air pollution sources and physical, chemical, and meteorological sciences behind air pollution are introduced. The consequences of air pollution to our society are also discussed.
(II and (VA or VIII)).

EARTHSS 51. Land Interactions. 4 Units.
The role of terrestrial processes in the Earth system. Provides an introduction to ecosystem processes that regulate the cycling of energy, water, carbon, and nutrients. Analysis of the impact of human activities.
Prerequisite: CHEM 1C.
Restriction: Earth System Science and Environmental Science majors have first consideration for enrollment.

EARTHSS 53. Ocean Biogeochemistry. 4 Units.
Overview of oceanography for those interested in earth system science. Focus is on physical, chemical, and biological processes that drive biogeochemical cycling in the oceans. Coastal systems also reviewed, with emphasis on California waters.
Prerequisite: CHEM 1C. Prerequisite or corequisite: MATH 2B or AP Calculus BC exam with a minimum score of 4.
Restriction: Earth System Science and Environmental Science majors have first consideration for enrollment.

EARTHSS 55. Earth's Atmosphere. 4 Units.
Composition, physics, and circulation of Earth's atmosphere with an emphasis on explaining the role of atmospheric processes in shaping the climate system. Topics include: atmospheric composition, the global energy balance, radiative transfer and climate, atmospheric circulation and climate sensitivity.
Corequisite: PHYSICS 3B or PHYSICS 7C.
Prerequisite: MATH 2B or a score of 4 or higher on the AP Calculus BC exam.
Restriction: Earth System Science and Environmental Science majors have first consideration for enrollment.

EARTHSS 60A. Fundamental Processes in Earth and Environmental Studies. 4 Units.
An introduction to the physical environment, biological systems, and human-environment interactions. Explores physical principles such as fluid transport and reaction rates using environmental examples as well as principles of populations, ecosystems, carrying capacity, and sustainable use of resources.
Corequisite: EARTHSS 1 or UNI STU 13A.
Restriction: Earth System Science and Environmental Science majors have first consideration for enrollment.
EARTHSS 60B. Local and Regional Environmental Issues. 4 Units.
An introduction to common environmental issues using case studies from Orange County and California. Studies natural hazards as well as human-caused problems with air quality, water quality, coastal pollution, ecosystem degradation, and urban climate.
Prerequisite: EARTHSS 60A and (CHEM 1B or CHEM H2B).
Restriction: Earth System Science and Environmental Science majors have first consideration for enrollment.

EARTHSS 60C. Global Environmental Issues. 4 Units.
An overview of global environmental changes including climate change, sea level rise, biodiversity loss, land and ocean degradation, and resource depletion. Discusses scientific, cultural, historical, and policy dimensions of these issues as well as possible solutions.
Prerequisite: EARTHSS 60A and (CHEM 1B or CHEM H2B).

EARTHSS H90. The Idiom and Practice of Science. 4 Units.
A series of fundamental and applied scientific problems are addressed, illustrating the pervasive role of mathematical analysis. Topics may include energy utilization, the climate system, the "greenhouse effect," ozone depletion and air pollution, ecological consequences of water pollution, nutrient cycles.
Restriction: Campuswide Honors Program students only.

EARTHSS 101. Paleoclimatology. 4 Units.
Explores past changes in Earth's climate. Topics include tools and techniques used to reconstruct past climate from natural archives; records and mechanisms of past climate changes throughout Earth history; and lessons learned from the paleo-record for prediction of future climate.
Prerequisite: (EARTHSS 60A and EARTHSS 60B and EARTHSS 60C) or (EARTHSS 51 and EARTHSS 53 and EARTHSS 55).
Restriction: Earth System Science and Environmental Science majors have first consideration for enrollment.

EARTHSS 110. Environmental Controversies. 4 Units.
Examines the roles and strategies of advocacy groups, scientists, lobbyists, celebrities, pundits, politicians, and other opinion-makers in creating and shaping public opinion on controversial environmental issues. Use and misuse of science to influence public opinion is elicited.
Prerequisite: (EARTHSS 60A and EARTHSS 60B and EARTHSS 60C) or EARTHSS 51 or EARTHSS 53 or EARTHSS 55.
Restriction: Earth System Science and Environmental Science majors have first consideration for enrollment.

EARTHSS 112. Global Climate Change and Impacts. 4 Units.
Observations over the 20th century show extensive changes in atmospheric composition, climate and weather, and biological systems that have paralleled industrial growth. Evidence of globally driven changes in these biogeochemical systems is studied, including projected impacts over the 21st century.
Prerequisite: (EARTHSS 51 and EARTHSS 53 and EARTHSS 55) or (EARTHSS 60A and EARTHSS 60B and EARTHSS 60C).
Restriction: Earth System Science and Environmental Science majors have first consideration for enrollment.

Concurrent with EARTHSS 222.

EARTHSS 114. Earth System Science Laboratory and Field Methods. 4 Units.
Introduction to methods used to measure exchange of gases and energy between the atmosphere and terrestrial ecosystems. Laboratories include data acquisition and isotopic and chromatographic analysis. Field measurements at UCI's Marsh Reserve include microclimate, hydrology, trace-gas exchange, and plant growth.
Prerequisite: EARTHSS 51 or EARTHSS 60A.
Restriction: Earth System Science and Environmental Science majors have first consideration for enrollment.

EARTHSS 116. Data Analysis for Earth Sciences. 4 Units.
Analysis and interpretation of geophysical data, including functional fitting, probability density functions, and multidimensional time-series methods, with applications in atmospheric, oceanic, and biogeochemical sciences.
Restriction: Earth System Science and Environmental Science majors have first consideration for enrollment.
EARTHSS 118. Advanced Data Analysis and Modeling. 4 Units.
Covers advanced data analysis and modeling techniques for applications within Earth system science. These applications will come from variety of Earth science (wrt large) problems. Students will gain programming proficiency by implementing computational methods in MATLAB.

Prerequisite: EARTHSS 116 and (MATH 2B or AP Calculus BC exam with a minimum score of 4).
Restriction: Earth System Science and Environmental Science majors have first consideration for enrollment.

EARTHSS 122. Atmospheric Dynamics. 4 Units.
Fluid dynamical processes that determine the large-scale flow of the atmosphere and ocean. Most important are interactions between the density stratification and the Coriolis force associated with Earth's rotation. Topics include circulation, vorticity, planetary waves and their role in climate.

Prerequisite: EARTHSS 55 and MATH 2D and PHYSICS 7C.
Restriction: Earth System Science and Environmental Science majors have first consideration for enrollment.

EARTHSS 124. Weather Analysis. 4 Units.
Provides an overview of weather systems in midlatitudes and tropics. The fundamental dynamics possible for these weather systems are described. Elementary weather analysis and forecasting techniques are introduced.

Prerequisite: EARTHSS 55 or EARTHSS 60A.
Restriction: Earth System Science and Environmental Science majors have first consideration for enrollment.

EARTHSS 130. Physical Oceanography. 4 Units.
Physical processes that determine the distribution of water properties such as salt and temperature. Fluid-dynamical underpinnings of physical oceanography. Wave motions. The wind-driven and thermohaline circulation. Similarities and differences between ocean and atmosphere dynamics.

Prerequisite: MATH 2D and PHYSICS 7C.
Restriction: Earth System Science and Environmental Science majors have first consideration for enrollment.

EARTHSS 132. Terrestrial Hydrology. 4 Units.
Comprehensive treatment of modern conceptual and methodological approaches to hydrological science. Combines qualitative understanding of hydrological processes with quantitative representation, approaches to measurement, and treatment of uncertainty. Components of the hydrological cycle and their linkages within the coupled Earth system.

Prerequisite: EARTHSS 60A or EARTHSS 51.
Restriction: Earth System Science and Environmental Science majors have first consideration for enrollment.

Concurrent with EARTHSS 232

EARTHSS 134. Fundamentals of GIS for Environmental Sciences. 4 Units.
Introduction to Geographic Information Systems (GIS). Topics include fundamentals of cartography, creating/editing GIS data, linking spatial and tabular data, georeferencing, map projections, geospatial analysis, spatial statistics and the development of GIS models. Examples from hydrology, ecology, and geology.

Prerequisite: EARTHSS 60A or EARTHSS 60C or EARTHSS 51 or EARTHSS 53.
Overlaps with CRM/LAW C148.
Restriction: Earth System Science and Environmental Science majors have first consideration for enrollment.

EARTHSS 138. Satellite Remote Sensing for Earth System Science. 4 Units.
Satellite remote sensing data are increasingly used to study the Earth system. Provides an overview of the principles behind remote sensing, and the types of satellite data available for study of the oceans, land, and atmosphere.

Prerequisite: EARTHSS 51 or EARTHSS 53 or EARTHSS 60A or EARTHSS 60C.
Restriction: Earth System Science and Environmental Science majors have first consideration for enrollment.

Concurrent with EARTHSS 238.
EARTHSS 140. Advanced Geology. 4 Units.
Introduces students to the geological processes which have formed and continue to shape the Earth. Topics will include geological time, minerals and the rock cycle, plate tectonics and associated geological hazards, earth resources, and earth surface processes.

Prerequisite: EARTHSS 51 or EARTHSS 60A.

Overlaps with EARTHSS 7.

Restriction: Earth System Science and Environmental Science majors have first consideration for enrollment.

EARTHSS 142. Atmospheric Chemistry. 4 Units.
Chemistry of the troposphere and stratosphere. Topics include: processes controlling the lifetime and reaction pathways of chemicals in the atmosphere, the role of the atmosphere in biogeochemical cycles, and interactions between atmospheric chemistry and the physical climate system.

Prerequisite: (CHEM 1C or CHEM H2C) and (MATH 2B or AP Calculus BC exam with a minimum score of 4).

Restriction: Earth System Science and Environmental Science majors have first consideration for enrollment.

EARTHSS 144. Marine Geochemistry and Biogeochemistry. 4 Units.
Processes controlling the major and minor element composition of seawater and element distributions in the ocean. Gas exchange, carbon dioxide system, stable isotopes, radionuclides as tracers and chronometers, particle fluxes, organic geochemistry, sediment geochemistry, global cycles of biogeochemically important elements.

Prerequisite: (EARTHSS 53 or EARTHSS 60A) and EARTHSS 60C.

Restriction: Earth System Science and Environmental Science majors have first consideration for enrollment.

EARTHSS 146. Consequences of Air Pollution. 4 Units.
From public health to the global climate system this course will explore the impacts of air pollution from the beginning of human history to current and emerging issues. Scientific concepts behind air pollution and solutions will be discussed.

Prerequisite: (EARTHSS 60A and EARTHSS 60B and EARTHSS 60C) or (EARTHSS 51 and EARTHSS 53 and EARTHSS 55).

Restriction: Earth System Science and Environmental Science majors have first consideration for enrollment.

EARTHSS 148. Marine Ecosystems and Global Change. 4 Units.
Presents an overview of marine ecosystem structure, diversity, and processes in the context of global change, including the impacts of climate warming, ocean acidification, marine fisheries, and anthropogenic additions of nutrients and pollutants.

Prerequisite: EARTHSS 53 or (EARTHSS 60A and EARTHSS 60C).

Restriction: Earth System Science and Environmental Science majors have first consideration for enrollment.

Concurrent with EARTHSS 248.

EARTHSS 150. Laboratory Methods in Earth Systems Science. 4 Units.
Introduction to analytical methods used in Earth science research. Lectures cover theory and applications of each method. Laboratories cover sample preparation, experimental design, standardization and calibration, operation of analytical instruments (mass spectrometers, gas chromatographs, and spectrophotometers), and analysis of data.

Restriction: Earth System Science and Environmental Science majors have first consideration for enrollment.

Concurrent with EARTHSS 250.

EARTHSS 164. Ecosystem Ecology. 4 Units.
A mechanistic perspective on ecosystem processes. Covers ecosystem development, element cycling, and interactions with plants and microbes. The role of ecosystems in environmental change is also addressed.

Prerequisite: CHEM 51C.

Same as BIO SCI E118.

Restriction: Earth System Science and Environmental Science majors have first consideration for enrollment.

Concurrent with EARTHSS 264.
EARTHSS 168. Physiological Plant Ecology. 4 Units.
An examination of the interactions between plants and their environment. Emphasis on the underlying physiological mechanisms of plant function, adaptations and responses to stress, and the basis of the distribution of plants and plant assemblages across the landscape.
Prerequisite: (EARTHSS 51) or (EARTHSS 60A and EARTHSS 60C) or (BIO SCI E106).
Same as BIO SCI E107.
Restriction: Earth System Science and Environmental Science majors have first consideration for enrollment.

EARTHSS 170. Environmental Microbiology. 4 Units.
Establishes a fundamental understanding of microbes living in the environment, including their distribution, diversity, and biochemistry, and discusses how they attribute to global biogeochemical cycles.
Prerequisite: (EARTHSS 53) or (EARTHSS 60A and EARTHSS 60C) or (BIO SCI E106 and BIO SCI M122).
Same as BIO SCI E163.
Concurrent with EARTHSS 270.

EARTHSS 172. Science Communication and Outreach. 2 Units.
Students learn and practice effective science communication skills useful in public and educational outreach. Topics include research explication, language scaffolding, educational psychology, oral presentation techniques, K-12 science standards, and effective writing styles for op-eds, blogs, and Web sites.
Prerequisite: EARTHSS 51 or EARTHSS 60A.
Grading Option: Pass/no pass only.
Repeatability: May be taken for credit 3 times.
Restriction: Earth System Science and Environmental Science majors have first consideration for enrollment.
Concurrent with EARTHSS 272.

EARTHSS 174. Ice in the Climate System. 4 Units.
Examines the major components of the Earth's cryosphere. Characteristics, volume, extent, remote sensing observations, long-term trends, mass balance, key physical processes, relevance and importance to the climate system, responses and feedbacks, future evolution, and key uncertainties will be discussed.
Prerequisite: (EARTHSS 60A and EARTHSS 60B and EARTHSS 60C) or (EARTHSS 51 and EARTHSS 53 and EARTHSS 55).
Restriction: Earth System Science and Environmental Science majors have first consideration for enrollment.
Concurrent with EARTHSS 274.

EARTHSS 178. Solving the Energy-Carbon-Climate Problem. 4 Units.
Why is climate change such a difficult problem? What can we do about it? The course will introduce the global politics of energy and climate, assess options for decreasing energy demand, generating low-carbon energy, sequestering carbon, geoengineering, and adaptation.
Prerequisite: (EARTHSS 60A and EARTHSS 60B and EARTHSS 60C) or (EARTHSS 51 and EARTHSS 53 and EARTHSS 55).
Restriction: Earth System Science majors and Environmental Science majors have first consideration for enrollment.

EARTHSS 180. Environmental Sustainability I. 4 Units.
Provides an introduction to sustainability from different points of view; historical, scientific, political, ethical, and economic.
Same as PP&D 131.
Restriction: Urban Studies and Social Ecology majors have first consideration for enrollment.

EARTHSS 182. Environmental Sustainability II. 4 Units.
Investigates how sustainability can be implemented in a variety of contexts including water, energy, non-renewable resources, biodiversity, and urban policy, and also how it could be measured.
Same as PP&D 132.
Restriction: Urban Studies, Social Ecology, Earth System Science, and Environmental Science majors have first consideration for enrollment.
EARTHSS 190A. Senior Seminar on Global Sustainability I. 2 Units.
Students attend weekly seminar to discuss current issues in global sustainability. Weekly attendance at Global Sustainability Forum also is required. Seminar utilized to analyze forum presentations. Prepare bibliography.

Prerequisite: BIO SCI 65 and ENVIRON E20 and EARTHSS 10.

Grading Option: In progress only.

Same as BIO SCI 191A, SOCECOL 186A.

Restriction: Seniors only.

EARTHSS 190B. Senior Seminar on Global Sustainability II. 2 Units.
Students attend weekly seminar to discuss current issues in global sustainability. Weekly attendance at Global Sustainability Forum also is required. Seminar utilized to analyze forum presentations. Prepare research proposal.

Prerequisite: BIO SCI 191A or SOCECOL 186A or EARTHSS 190A.

Grading Option: In progress only.

Same as BIO SCI 191B, SOCECOL 186B.

Restriction: Seniors only.

EARTHSS 190CW. Writing/Senior Seminar on Global Sustainability III. 4 Units.
Students attend weekly seminar to discuss current issues in global sustainability. Weekly attendance at Global Sustainability Forum also is required. Seminar utilized to analyze Forum presentations and to prepare senior research paper. Prepare/write research paper under direction of faculty member.

Prerequisite: BIO SCI 191B or EARTHSS 190B or SOCECOL 186B. Satisfactory completion of the Lower-Division Writing requirement.

Same as BIO SCI 191CW, SOCECOL 186CW.

Restriction: Seniors only.

EARTHSS 191. Title Introduction to Research in Earth System Science. 1 Unit.
Weekly presentations by Earth System Science faculty describing ongoing research in their laboratories. The goals are to introduce students to the range of research topics and methods in Earth System Science and to the research opportunities available within the Department.

Grading Option: Pass/no pass only.

Restriction: Upper-division students only. Earth System Science and Environmental Science majors have first consideration for enrollment. Earth and Atmospheric Sciences minors have first consideration for enrollment.

EARTHSS 192. Careers in Earth System Science. 1 Unit.
A weekly seminar course designed to help students transition to post-graduation career paths. Topics include designing effective resumes, applying to graduate school, and seeking employment. Also includes presentations by faculty, business, and government leaders describing potential environmental science career trajectories.

Grading Option: Pass/no pass only.

Restriction: Seniors only. Earth System Science and Environmental Science majors have first consideration for enrollment.

EARTHSS 197. Independent Study in Earth System Science. 1-4 Units.
Field study, educational outreach, or other independent projects under faculty direction. Interested students should arrange with an ESS faculty member to supervise and support an independent study project. A written summary is required at the end of each quarter.

Grading Option: Pass/no pass only.

Repeatability: May be taken for credit for 12 units.
EARTHSS 198W. Senior Thesis in Earth System Science. 4 Units.
Students receive guidance on the effective oral and written communication of research results. Students prepare and present a seminar, a poster, and a written thesis describing their research in Earth System Science.

Prerequisite: Two quarters of EARTHSS 199. Satisfactory completion of the Lower-Division Writing requirement.

Overlap with EARTHSS H198.

EARTHSS H198. Honors Thesis in Earth System Science. 4 Units.
Students receive guidance on effective written and oral communication of research results. Students prepare and present a seminar, poster, and written thesis describing their honors research in Earth System Science. Submission of the thesis and successful completion of this course will also satisfy the UCI upper-division writing requirement.

Prerequisite: EARTHSS 199A and EARTHSS 199B

Restriction: Consent of instructor to enroll and Prerequisite required

EARTHSS 199. Undergraduate Research. 1-4 Units.
For junior and senior undergraduates, preferably with majors in science or engineering. Interested students should arrange with an ESS faculty member to supervise and support a research project. A written summary is required at the end of each quarter.

Repeatability: May be taken for credit for 12 units.

Restriction: Juniors and Seniors only.

EARTHSS H199A. Honors Research in Earth System Science. 4 Units.
Undergraduate honors research in Earth System Science. A student commitment of 10-15 hours a week is expected, and a written report is required at the end of the quarter.

Restriction: Earth System Science Honors Program students only. Earth System Science majors only. Campuswide Honors Program students only.

EARTHSS H199B. Honors Research in Earth System Science. 4 Units.
Undergraduate honors research in Earth System Science. A student commitment of 10-15 hours a week is expected, and a written report is required at the end of the quarter.

Restriction: Earth System Science Honors Program students only. Earth System Science majors only. Campuswide Honors Program students only.

EARTHSS H199C. Honors Research in Earth System Science. 4 Units.
Undergraduate honors research in Earth System Science. A student commitment of 10-15 hours a week is expected, and a written report is required at the end of the quarter.

Restriction: Earth System Science Honors Program students only. Earth System Science majors only. Campuswide Honors Program students only.

EARTHSS 200. Global Physical Climatology. 4 Units.
A descriptive overview of Earth's climate system and energy budget. Large-scale circulations, key physical processes, and climate sensitivity of the atmosphere, ocean, land surface, and cryosphere.

Restriction: Graduate students only.

EARTHSS 202. Climate Change. 4 Units.
Explores past, present, and projected changes in Earth's climate. Topics include paleoclimate records and mechanisms of natural climate variability at a range of timescales (orbital to seasonal); General Circulation Models; and IPCC observations and projections of future climate change.

Restriction: Graduate students only.

EARTHSS 212. Geoscience Modeling and Data Analysis. 4 Units.
Computer-based course. Fundamental statistical techniques needed to analyze Earth system data and models. Basic numerical techniques to solve Earth system models. Focuses on linear and non-linear ordinary differential equations, as well as simple partial differential equations.

Restriction: Graduate students only.
EARTHSS 222. Global Climate Change and Impacts. 4 Units.
Observations over the 20th century show extensive changes in atmospheric composition, climate and weather, and biological systems that have paralleled industrial growth. Evidence of globally driven changes in these biogeochemical systems is studied, including projected impacts over the 21st century.

Concurrent with EARTHSS 112.

EARTHSS 224. Ocean Processes. 4 Units.
Introduction to the physics, chemistry, and biology of the oceans. Offers a mechanistic perspective of the structure and functioning of marine ecosystems, nutrient cycles, and role of ecosystem dynamics in local and global biogeochemistry.

Restriction: Graduate students only.

EARTHSS 226. Land Surface Processes. 4 Units.
Introduction to the physics, chemistry, and biology of the oceans. Offers a mechanistic perspective of the structure and functioning of marine ecosystems, nutrient cycles, and role of ecosystem dynamics in local and global biogeochemistry.

Restriction: Graduate students only.

EARTHSS 228. Geophysical Fluid Dynamics. 4 Units.
Introduces fluid dynamical processes that determine the large-scale flow of the atmosphere and ocean, with particular emphasis on the interactions between the stable density stratification and the Coriolis force associated with Earth's rotation.

Restriction: Graduate students only.

EARTHSS 232. Terrestrial Hydrology. 4 Units.
Comprehensive treatment of modern conceptual and methodological approaches to hydrological science. Combines qualitative understanding of hydrological processes with quantitative representation, approaches to measurement, and treatment of uncertainty. Components of the hydrological cycle and their linkages within the coupled Earth system.

Prerequisite: EARTHSS 60A or EARTHSS 51.

Concurrent with EARTHSS 132

EARTHSS 236. Radiative Processes and Remote Sensing. 4 Units.
Solar and terrestrial radiation and Earth system interaction. Radiative transfer theory. Principles, applications of remote sensing of environment. Planck’s law, radiative transfer equation, radiative properties of trace gasses and aerosols, remote sensing techniques, global trends in radiative forcing.

Prerequisite: MATH 2D and PHYSICS 7D.

EARTHSS 238. Satellite Remote Sensing for Earth System Science. 4 Units.
Satellite remote sensing data are increasingly used to study the Earth system. Provides an overview of the principles behind remote sensing, and the types of satellite data available for study of the oceans, land, and atmosphere.

Concurrent with EARTHSS 138.

EARTHSS 240. Atmospheric Chemistry and Physics. 4 Units.
Examines the physical/chemical processes which determine the structure and composition of Earth's atmosphere and its role in the climate system.

Restriction: Graduate students only.

EARTHSS 248. Marine Ecosystems and Global Change. 4 Units.
Presents an overview of marine ecosystem structure, diversity, and processes in the context of global change, including the impacts of climate warming, ocean acidification, marine fisheries, and anthropogenic additions of nutrients and pollutants.

Prerequisite: EARTHSS 224.

Restriction: Graduate students only.

Concurrent with EARTHSS 148.

EARTHSS 250. Laboratory Methods in Earth System Science. 4 Units.
Introduction to analytical methods used in Earth science research. Lectures cover theory and applications of each method. Laboratories cover sample preparation, experimental design, standardization and calibration, operation of analytical instruments (mass spectrometers, gas chromatographs, and spectrophotometers), and analysis of data.

Concurrent with EARTHSS 150.
EARTHSS 264. Ecosystem Ecology. 4 Units.
A mechanistic perspective on ecosystem processes. Covers ecosystem development, element cycling, and interactions with plants and microbes. The role of ecosystems in environmental change is also addressed.

Prerequisite: CHEM 51C.
Concurrent with EARTHSS 164 and BIO SCI E118.

EARTHSS 266. Global Biogeochemical Cycles. 4 Units.
Global biogeochemical cycling of the elements. Topics include global cycling of carbon, nitrogen, oxygen, and sulfur; impact of human activities on biogeochemical processes.

Restriction: Graduate students only.

EARTHSS 270. Environmental Microbiology. 4 Units.
Establishes a fundamental understanding of microbes living in the environment, including their distribution, diversity, and biochemistry, and discusses how they attribute to global biogeochemical cycles.

Prerequisite: (EARTHSS 53 or EARTHSS 60A) and (EARTHSS 60C or BIO SCI E106).
Concurrent with EARTHSS 170 and BIO SCI E163.

EARTHSS 272. Science Communication and Outreach. 2 Units.
Students learn and practice effective science communication skills useful in public and educational outreach. Topics include research explication, language scaffolding, educational psychology, oral presentation techniques, K-12 science standards, and effective writing styles for op-eds, blogs, and Web sites.

Grading Option: Satisfactory/unsatisfactory only.
Repeatability: May be taken for credit 3 times.
Concurrent with EARTHSS 172.

EARTHSS 274. Ice in the Climate System. 4 Units.
Examines the major components of the Earth's cryosphere. Characteristics, volume, extent, remote sensing observations, long-term trends, mass balance, key physical processes, relevance and importance to the climate system, responses and feedbacks, future evolution, and key uncertainties will be discussed.

Concurrent with EARTHSS 174.

EARTHSS 280A. Special Topics in Earth System Science. 1-4 Units.
Each quarter is devoted to current topics in the field of Earth System Science. Topics addressed vary each quarter.
Repeatability: Unlimited as topics vary.

EARTHSS 280B. Special Topics in Earth System Science. 1-4 Units.
Each quarter is devoted to current topics in the field of Earth System Science. Topics addressed vary each quarter.
Prerequisite: EARTHSS 280A.
Repeatability: Unlimited as topics vary.

EARTHSS 280C. Special Topics in Earth System Science. 1-4 Units.
Each quarter is devoted to current topics in the field of Earth System Science. Topics addressed vary each quarter.
Prerequisite: EARTHSS 280B.
Repeatability: Unlimited as topics vary.

EARTHSS 282A. Special Topics in Climate. 1-4 Units.
Each quarter is devoted to in-depth analysis of an important and rapidly developing area in the field of climate dynamics. Topics addressed vary each quarter.
Repeatability: Unlimited as topics vary.
Restriction: Graduate students only.
EARTHSS 282B. Special Topics in Climate. 1-4 Units.
Each quarter is devoted to in-depth analysis of an important and rapidly developing area in the field of climate dynamics. Topics addressed vary each quarter.

Prerequisite: EARTHSS 282A.

Repeatability: Unlimited as topics vary.

Restriction: Graduate students only.

EARTHSS 282C. Special Topics in Climate. 1-4 Units.
Each quarter is devoted to in-depth analysis of an important and rapidly developing area in the field of climate dynamics. Topics addressed vary each quarter.

Prerequisite: EARTHSS 282B.

Repeatability: Unlimited as topics vary.

Restriction: Graduate students only.

EARTHSS 284A. Special Topics in Atmospheric Chemistry. 1-4 Units.
Each quarter is devoted to current topics in the field of Atmospheric Chemistry. Topics addressed vary each quarter.

Repeatability: Unlimited as topics vary.

EARTHSS 284B. Special Topics in Atmospheric Chemistry. 1-4 Units.
Each quarter is devoted to current topics in the field of Atmospheric Chemistry. Topics addressed vary each quarter.

Prerequisite: EARTHSS 284A.

Repeatability: Unlimited as topics vary.

EARTHSS 284C. Special Topics in Atmospheric Chemistry. 1-4 Units.
Each quarter is devoted to current topics in the field of Atmospheric Chemistry. Topics addressed vary each quarter.

Prerequisite: EARTHSS 284B.

Repeatability: Unlimited as topics vary.

EARTHSS 286A. Special Topics in Biogeochemistry. 1-4 Units.
Each quarter is devoted to in-depth analysis of a subarea in biogeochemistry which is undergoing rapid development. Topics addressed vary each quarter.

Repeatability: Unlimited as topics vary.

Restriction: Graduate students only.

EARTHSS 286B. Special Topics in Biogeochemistry. 1-4 Units.
Each quarter is devoted to in-depth analysis of a subarea in biogeochemistry which is undergoing rapid development. Topics addressed vary each quarter.

Prerequisite: EARTHSS 286A.

Repeatability: Unlimited as topics vary.

Restriction: Graduate students only.

EARTHSS 286C. Special Topics in Biogeochemistry. 1-4 Units.
Each quarter is devoted to in-depth analysis of a subarea in biogeochemistry which is undergoing rapid development. Topics addressed vary each quarter.

Prerequisite: EARTHSS 286B.

Repeatability: Unlimited as topics vary.

Restriction: Graduate students only.
EARTHSS 288A. Special Topics in Ecosystems. 1-4 Units.
Each quarter is devoted to current topics relating to Ecosystems. Topics addressed vary each quarter.

Repeatability: Unlimited as topics vary.

EARTHSS 288B. Special Topics in Ecosystems. 1-4 Units.
Each quarter is devoted to current topics relating to Ecosystems. Topics addressed vary each quarter.

Prerequisite: EARTHSS 288A.

Repeatability: Unlimited as topics vary.

EARTHSS 288C. Special Topics in Ecosystems. 1-4 Units.
Each quarter is devoted to current topics relating to Ecosystems. Topics addressed vary each quarter.

Prerequisite: EARTHSS 288B.

Repeatability: Unlimited as topics vary.

EARTHSS 290. Seminar. 1 Unit.
Weekly seminars and discussions on topics of general and current interest in Earth System Science. Topics addressed vary each quarter.

Grading Option: Satisfactory/unsatisfactory only.

Repeatability: Unlimited as topics vary.

Restriction: Graduate students only.

EARTHSS 291. Research Seminar. 1-4 Units.
Detailed discussions of ongoing research in earth system science. Format, content, and frequency of the course are variable.

Repeatability: May be repeated for credit unlimited times.

EARTHSS 296. Practicum in Earth System Science. 4 Units.
Designed to introduce first-year graduate students to research. Students explore research opportunities and develop a proposal for a summer research project under the direction of a faculty mentor.

Restriction: Graduate students only.

EARTHSS 299. Research. 2-12 Units.
Supervised original research in areas of Earth System Science.

Repeatability: May be repeated for credit unlimited times.

EARTHSS 399. University Teaching. 1-4 Units.
Limited to Teaching Assistants.

Grading Option: Satisfactory/unsatisfactory only.

Repeatability: May be repeated for credit unlimited times.

Restriction: Graduate students only.

Mathematics Courses

MATH 1A. Pre-Calculus. 4 Workload Units.
Basic equations and inequalities, linear and quadratic functions, and systems of simultaneous equations. Course may be offered online.

MATH 1B. Pre-Calculus. 4 Units.
Preparation for calculus and other mathematics courses. Exponentials, logarithms, trigonometry, polynomials, and rational functions. Satisfies no requirements other than contribution to the 180 units required for graduation. Course may be offered online.

Prerequisite: MATH 1A or placement into MATH 1B via the Calculus Placement exam, or a score of 450 or higher on the Mathematics section of the SAT Reasoning Test.
MATH 2A. Single-Variable Calculus. 4 Units.
Introduction to derivatives, calculation of derivatives of algebraic and trigonometric functions; applications including curve sketching, related rates, and optimization. Exponential and logarithm functions.

Prerequisite: MATH 1B or placement into MATH 2A via the Calculus Placement exam (fee required), or a score of 3 on the AP Calculus AB exam, or a score of 600 or higher on the Mathematics section of the SAT Reasoning Test. MATH 1B with a grade of C or better.

Restriction: School of Physical Sciences, School of Engineering, and School of Information and Computer Sciences majors have first consideration for enrollment.

(Vb)

MATH 2B. Single-Variable Calculus. 4 Units.
Definite integrals; the fundamental theorem of calculus. Applications of integration including finding areas and volumes. Techniques of integration. Infinite sequences and series. Parametric and polar equations.

Prerequisite: MATH 2A.

Restriction: School of Physical Sciences, School of Engineering, and School of Information and Computer Sciences majors have first consideration for enrollment.

(Vb)

MATH 2D. Multivariable Calculus. 4 Units.
Differential and integral calculus of real-valued functions of several real variables, including applications. Polar coordinates.

Prerequisite: MATH 2A and MATH 2B.

Overlaps with MATH H2D.

Restriction: School of Physical Sciences, School of Engineering, and School of Information and Computer Sciences majors have first consideration for enrollment.

(Vb)

MATH 2E. Multivariable Calculus. 4 Units.
The differential and integral calculus of vector-valued functions. Implicit and inverse function theorems. Line and surface integrals, divergence and curl, theorems of Greens, Gauss, and Stokes.

Prerequisite: MATH 2D.

Overlaps with MATH H2E.

Restriction: School of Physical Sciences and School of Engineering majors have first consideration for enrollment.

MATH 3A. Introduction to Linear Algebra. 4 Units.
Systems of linear equations, matrix operations, determinants, eigenvalues and eigenvectors, vector spaces, subspaces and dimension.

Prerequisite: MATH 2B.

Overlaps with MATH 6G, I&C SCI 6N.

Restriction: School of Physical Sciences and School of Engineering majors have first consideration for enrollment.

MATH 3D. Elementary Differential Equations. 4 Units.
Linear differential equations, variation of parameters, constant coefficient cookbook, systems of equations, Laplace transforms, series solutions.

Prerequisite: MATH 2D and MATH 3A.

Restriction: School of Physical Sciences and School of Engineering majors have first consideration for enrollment.
MATH 4. Mathematics for Economists. 4 Units.
Topics in linear algebra and multivariable differential calculus suitable for economic applications.
Prerequisite: MATH 2B.
Overlaps with MATH 2D, MATH 2J, MATH 3A.
Restriction: MATH 4 may not be taken for credit if taken after MATH 2D and either MATH 2J or MATH 3A.

(Vb)

MATH 6G. Linear Algebra. 4 Units.
Linear equations, vector spaces and subspaces, linear functions and matrices, linear codes, determinants, scalar products.
Prerequisite: High school mathematics through trigonometry.
Overlaps with MATH 3A, I&C SCI 6N.

(Vb)

MATH 8. Explorations in Functions and Modeling. 4 Units.
Explorations of applications and connections in topics in algebra, geometry, calculus, and statistics for future secondary math educators. Emphasis on nonstandard modeling problems.
Corequisite: MATH 2A.

MATH 13. Introduction to Abstract Mathematics. 4 Units.
Introduction to formal definition and rigorous proof writing in mathematics. Topics include basic logic, set theory, equivalence relations, and various proof techniques such as direct, induction, contradiction, contrapositive, and exhaustion.
Prerequisite: MATH 2A or I&C SCI 6D.
Restriction: Mathematics majors have first consideration for enrollment.

MATH 77A. Mathematics and Computation in the Digital Age: Introduction to Signal Processing. 4 Units.
Signals in Matlab; blurring, filtering; elements of linear algebra, statistics, optimization; blind matrix inversion; de-correlation method, stochastic gradient descent method, applications to sounds and images.
Prerequisite: MATH 2B and I&C SCI 31.
Same as I&C SCI 77A.
Restriction: Lower-division students only.

(II, Va)

MATH 77B. Mathematics and Computation in the Digital Age: Introduction to Collaborative Filtering. 4 Units.
Basic concepts of collaborative filtering; clustering; matrix factorization and principal components analysis; regression; classification: naive Bayes classifier, decision trees, Perceptron (neural networks).
Prerequisite: MATH 2B and I&C SCI 31.
Same as I&C SCI 77B.
Restriction: Lower-division students only.

(II, Va)

MATH 77C. Mathematics and Computation in the Digital Age: Introduction to Image Processing. 4 Units.
Image de-noising, de-blurring, low pass filtering; image segmentation and classification; Sparse representation; visualization.
Prerequisite: MATH 2B and I&C SCI 31.
Same as I&C SCI 77C.
Restriction: Lower-division students only.

(II, Va)
MATH 77D. Mathematics and Computation in the Digital Age: Intro to Game Simulation and Analysis. 4 Units.
Combinatorial Game Theory--game classification, tree graphs, strategy analysis, Sprague Grundy functions, Bouton's Theorem; Zero-Sum and General-Sum Game Theory--pay off matrices, Minimax Theorem, Nash equilibrium; machine learning--search algorithms.
Prerequisite: MATH 2B and I&C SCI 31.
Same as I&C SCI 77D.
Restriction: Lower-division students only.

(II, Va)

MATH 105A. Numerical Analysis. 4 Units.
Introduction to the theory and practice of numerical computation. Floating point arithmetic, roundoff; solving transcendental equations; quadrature; linear systems, eigenvalues, power method.
Corequisite: MATH 105LA.
Prerequisite: MATH 3A. Some acquaintance with computer programming.
Overlaps with ENGRMAE 185.

MATH 105B. Numerical Analysis. 4 Units.
Introduction to the theory and practice of numerical computation. Lagrange interpolation, finite differences, splines, Padé approximations; Gaussian quadrature; Fourier series and transforms.
Corequisite: MATH 105LB.
Prerequisite: MATH 105A.

MATH 105LA. Numerical Analysis Laboratory. 1 Unit.
Provides practical experience to complement the theory developed in Mathematics 105A.
Corequisite: MATH 105A.

MATH 105LB. Numerical Analysis Laboratory. 1 Unit.
Provides practical experience to complement the theory developed in Mathematics 105B.
Corequisite: MATH 105B.

MATH 107. Numerical Differential Equations. 4 Units.
Theory and applications of numerical methods to initial and boundary-value problems for ordinary and partial differential equations.
Corequisite: MATH 107L.
Prerequisite: MATH 3D and MATH 105A and MATH 105B.

MATH 107L. Numerical Differential Equations Laboratory. 1 Unit.
Provides practical experience to complement the theory developed in Mathematics 107.
Corequisite: MATH 107.

MATH 112A. Introduction to Partial Differential Equations and Applications. 4 Units.
Introduction to ordinary and partial differential equations and their applications in engineering and science. Basic methods for classical PDEs (potential, heat, and wave equations). Classification of PDEs, separation of variables and series expansions, special functions, eigenvalue problems.
Prerequisite: MATH 2D and MATH 3D.

MATH 112B. Introduction to Partial Differential Equations and Applications. 4 Units.
Introduction to partial differential equations and their applications in engineering and science. Basic methods for classical PDEs (potential, heat, and wave equations). Green functions and integral representations, method of characteristics.
Prerequisite: MATH 2E and MATH 112A.

MATH 112C. Introduction to Partial Differential Equations and Applications. 4 Units.
Nonhomogeneous problems and Green's functions, Sturm-Liouville theory, general Fourier expansions, applications of partial differential equations in different areas of science.
Prerequisite: MATH 3D and MATH 2D and MATH 3A.
MATH 113A. Mathematical Modeling in Biology. 4 Units.
Discrete mathematical and statistical models; difference equations, population dynamics, Markov chains, and statistical models in biology.
Prerequisite: MATH 2B.

MATH 113B. Mathematical Modeling in Biology. 4 Units.
Linear algebra; differential equations models; dynamical systems; stability; hysteresis; phase plane analysis; applications to cell biology, viral dynamics, and infectious diseases.
Prerequisite: MATH 113A.

MATH 113C. Mathematical Modeling in Biology. 4 Units.
Partial differential equations models in biology such as one dimensional blood flow, morphogen gradients, and tumor growth; stochastic models in cancer and epidemiology.
Prerequisite: MATH 113B.

MATH 114A. Applied Complex Analysis. 4 Units.
Introduction to complex functions and their applications to engineering and science. Complex numbers, elementary functions; analytic functions; complex integration; power series; residue theory; conformal maps; applications.
Prerequisite: MATH 2D and MATH 3A.
Overlaps with MATH 147.

MATH 115. Mathematical Modeling. 4 Units.
Mathematical modeling and analysis of phenomena that arise in engineering physical sciences, biology, economics, or social sciences.
Prerequisite: Corequisite or prerequisite: MATH 112A or ENGRMAE 140. MATH 2D and (MATH 3A or MATH 6G) and MATH 3D.

MATH 117. Dynamical Systems. 4 Units.
Introduction to the modern theory of dynamical systems including contraction mapping principle, fractals and chaos, conservative systems, Kepler problem, billiard models, expanding maps, Smale's horseshoe, topological entropy.
Prerequisite: MATH 3D and MATH 140A.

MATH 118. The Theory of Differential Equations. 4 Units.
Existence and uniqueness of solutions, continuous dependence of solutions on initial conditions and parameters, Lyapunov and asymptotic stability, Floquet theory, nonlinear systems, and bifurcations.
Prerequisite: MATH 3D and MATH 140A.

MATH 119. Boundary Value Problems. 4 Units.
Introduction to boundary value problems including Green's function representations, maximum principle, variational formulations, Sturm-Liouville problems, eigenfunction expansions, existence and uniqueness for nonlinear problems, method of shooting, finite difference methods.
Prerequisite: MATH 3D and MATH 140A.

MATH 120A. Introduction to Abstract Algebra: Groups. 4 Units.
Axioms for group theory; permutation groups, matrix groups. Isomorphisms, homomorphisms, quotient groups. Advanced topics as time permits. Special emphasis on doing proofs.
Prerequisite: (MATH 3A OR MATH 6G) and MATH 13. MATH 13 with a grade of C- or better.
Restriction: Mathematics majors have first consideration for enrollment.

MATH 120B. Introduction to Abstract Algebra: Rings and Fields. 4 Units.
Basic properties of rings; ideals, quotient rings; polynomial and matrix rings. Elements of field theory.
Prerequisite: MATH 120A.
Restriction: Mathematics majors have first consideration for enrollment.
MATH 120C. Introduction to Abstract Algebra: Galois Theory. 4 Units.
Galois Theory: proof of the impossibility of certain ruler-and-compass constructions (squaring the circle, trisecting angles); nonexistence of analogues to the “quadratic formula” for polynomial equations of degree 5 or higher.

Prerequisite: MATH 120B.

Restriction: Mathematics majors have first consideration for enrollment.

MATH 121A. Linear Algebra. 4 Units.

Prerequisite: (MATH 3A OR MATH 6G) and MATH 13. MATH 13 with a grade of C- or better.

Restriction: Mathematics majors have first consideration for enrollment.

MATH 121B. Linear Algebra. 4 Units.
Introduction to modern abstract linear algebra. Special emphasis on students doing proofs. Canonical forms; inner products; similarity of matrices.

Prerequisite: MATH 121A.

Restriction: Mathematics majors have first consideration for enrollment.

MATH 130A. Probability and Stochastic Processes. 4 Units.
Basic concepts of random variables, distributions, independence, correlations, moments, limit theorems, conditional probability, Markov chains, gambler’s ruin, branching process, birth and death processes, numerical simulations in Matlab.

Prerequisite: MATH 2A and MATH 2B and (MATH 3A or MATH 6G).

Overlaps with MATH 131A, MATH 132A, STATS 120A.

MATH 130B. Probability and Stochastic Processes. 4 Units.
Exponential distributions, Poisson processes, continuous time Markov chains, renewal theory, insurance ruin and claim problems, numerical simulations in Matlab.

Prerequisite: MATH 130A OR MATH 131A or STATS 120A.

MATH 130C. Probability and Stochastic Processes. 4 Units.
Martingales, Invariance Principle, Brownian motions and applications in option pricing, stationary processes and applications in Wiener filter, numerical simulations in Matlab.

Prerequisite: MATH 130B.

MATH 131A. Introduction to Probability and Statistics. 4 Units.
Introductory course covering basic principles of probability and statistical inference. Axiomatic definition of probability, random variables, probability distributions, expectation.

Prerequisite: MATH 2A and MATH 2B and (MATH 2D or MATH 4).

Overlaps with MATH 130A, MATH 132A.

MATH 131B. Introduction to Probability and Statistics. 4 Units.
Introductory course covering basic principles of probability and statistical inference. Point estimation, interval estimating, and testing hypotheses, Bayesian approaches to inference.

Prerequisite: (MATH 131A or STATS 120A) and (MATH 3A or MATH 6G or MATH 4).

MATH 133A. Statistical Methods with Applications to Finance. 4 Units.
Overview of probability, statistics and financial concepts: distribution, point estimation, confidence interval, linear regression, hypothesis testing, principal component analysis, financial applications.

Prerequisite: MATH 130A or STATS 120A or MATH 2D or MATH 4.

MATH 133B. Statistical Methods with Applications to Finance. 4 Units.
Overview of markets and options: asset modeling, Brownian motion, risk neutrality, option pricing, value at risk, MC simulations.

Prerequisite: MATH 133A.
MATH 140A. Elementary Analysis. 4 Units.
Introduction to real analysis, including: convergence of sequence, infinite series, differentiation and integration, and sequences of functions. Students are expected to do proofs.
Prerequisite: MATH 2D and MATH 3A and MATH 13. MATH 13 with a grade of C- or better.
Restriction: Math majors have first consideration for enrollment.

MATH 140B. Elementary Analysis. 4 Units.
Introduction to real analysis including convergence of sequences, infinite series, differentiation and integration, and sequences of functions. Students are expected to do proofs.
Prerequisite: MATH 140A. MATH 140A with a grade of C- or better.
Restriction: Mathematics majors have first consideration for enrollment.

MATH 140C. Analysis in Several Variables. 4 Units.
Rigorous treatment of multivariable differential calculus. Jacobians, Inverse and Implicit Function theorems.
Prerequisite: MATH 140B.

MATH 141. Introduction to Topology. 4 Units.
The elements of naïve set theory and the basic properties of metric spaces. Introduction to topological properties.
Prerequisite: MATH 140A.

MATH 146. Fourier Analysis. 4 Units.
Rigorous introduction to the theory of Fourier series and orthogonal expansions. Fourier transform.
Prerequisite: MATH 3D and MATH 140A and MATH 140B. Recommended: MATH 112A.

MATH 147. Complex Analysis. 4 Units.
Rigorous treatment of basic complex analysis: analytic functions, Cauchy integral theory and its consequences, power series, residue calculus, harmonic functions, conformal mapping. Students are expected to do proofs.
Corequisite: MATH 140B.
Prerequisite: MATH 140A.
Overlaps with MATH 114A.
Restriction: MATH 114A may not be taken for credit after MATH 147.

MATH 150. Introduction to Mathematical Logic. 4 Units.
First order logic through the Completeness Theorem for predicate logic.
Prerequisite: MATH 13 or (I&C SCI 6B and I&C SCI 6D). MATH 13 with a grade of C- or better.
Overlaps with LPS 105B, PHILOS 105B.

MATH 151. Set Theory. 4 Units.
Axiomatic development; infinite sets; cardinal and ordinal numbers.
Prerequisite: MATH 150.
Overlaps with SOC SCI 105A, LPS 105A.

MATH 152. Computability. 4 Units.
Computable functions; undecidability; Gödel's Incompleteness Theorem.
Prerequisite: MATH 150.
Overlaps with PHILOS 105C, LPS 105C.
MATH 161. Modern Geometry. 4 Units.
Euclidean Geometry; Hilbert's Axioms; Absolute Geometry; Hyperbolic Geometry; the Poincare Models; and Geometric Transformations.
Prerequisite: MATH 13 or (I&C SCI 6B and I&C SCI 6D). MATH 13 with a C- or better.
Restriction: Math majors have first consideration for enrollment.

MATH 162A. Introduction to Differential Geometry. 4 Units.
Applications of advanced calculus and linear algebra to the geometry of curves and surfaces in space.
Prerequisite: MATH 2E and MATH 3A and MATH 3D.

MATH 162B. Introduction to Differential Geometry. 4 Units.
Applications of advanced calculus and linear algebra to the geometry of curves and surfaces in space.
Prerequisite: MATH 162A.

MATH 162A. Introduction to Differential Geometry. 4 Units.
Applications of advanced calculus and linear algebra to the geometry of curves and surfaces in space.
Prerequisite: MATH 2E and MATH 3A and MATH 3D.

MATH 162B. Introduction to Differential Geometry. 4 Units.
Applications of advanced calculus and linear algebra to the geometry of curves and surfaces in space.
Prerequisite: MATH 162A.

MATH 162A. Introduction to Differential Geometry. 4 Units.
Applications of advanced calculus and linear algebra to the geometry of curves and surfaces in space.
Prerequisite: MATH 162A.

MATH 162B. Introduction to Differential Geometry. 4 Units.
Applications of advanced calculus and linear algebra to the geometry of curves and surfaces in space.
Prerequisite: MATH 162A.

MATH 171A. Mathematical Methods in Operations Research Linear Programming. 4 Units.
Simplex algorithm, duality, optimization in networks.
Prerequisite: MATH 3A or MATH 6G.

MATH 171B. Mathematical Methods in Operations Research Nonlinear Programming. 4 Units.
Conditions for optimality, quadratic and convex programming, search methods, geometric programming.
Prerequisite: MATH 2D and (MATH 3A or MATH 6G).

MATH 173A. Introduction to Cryptology. 4 Units.
Introduction to some of the mathematics used in the making and breaking of codes, with applications to classical ciphers and public key systems. The mathematics which is covered includes topics from number theory, probability, and abstract algebra.
Prerequisite: MATH 2B and (MATH 3A or MATH 6G) and (MATH 13 or (I&C SCI 6B and I&C SCI 6D)). MATH 13 with a grade of C- or better.

MATH 173B. Introduction to Cryptology. 4 Units.
Introduction to some of the mathematics used in the making and breaking of codes, with applications to classical ciphers and public key systems. The mathematics which is covered includes topics from number theory, probability, and abstract algebra.
Prerequisite: MATH 173A.

MATH 174A. Modern Graphy Theory. 4 Units.
An introductory course emphasizing the fundamental concepts of graph theory by developing abilities to produce examples, following and devising simple proofs, and current applications of graph theory. Topics include: Graph Types; Matching in Graphs; Menger's Theorem; Kuratowski's Theorem.
Prerequisite: MATH 2B and (MATH 3A or MATH 6G) and (MATH 13 or (I&C SCI 6B and I&C SCI 6D)). MATH 13 with a grade of C- or better.

MATH 175. Combinatorics . 4 Units.
Introduction to combinatorics including basic counting principles, permutations, combinations, binomial coefficients, inclusion-exclusion, derangements, ordinary and exponential generating functions, recurrence relations, Catalan numbers, Stirling numbers, and partition numbers. Course may be offered online.
Prerequisite: MATH 2B and MATH 13. MATH 13 with a grade of C- or better.

MATH 176. Mathematics of Finance. 4 Units.
After reviewing tools from probability, statistics, and elementary differential and partial differential equations, concepts such as hedging, arbitrage, Puts, Calls, the design of portfolios, the derivation and solution of the Blac-Scholes, and other equations are discussed.
Prerequisite: MATH 3A.
Same as ECON 135.
Restriction: Mathematics, Economics, Quantitative Economics, and Business Economics majors have first consideration for enrollment.
MATH 180A. Number Theory. 4 Units.
Prerequisite: MATH 3A and MATH 13. MATH 13 with a grade of C- or better.
Restriction: Math majors have first consideration for enrollment.

MATH 180B. Number Theory. 4 Units.
Introduction to number theory and applications. Analytic number theory, character sums, finite fields, discrete logarithm, computational complexity. Introduction to coding theory. Other topics as time permits.
Prerequisite: MATH 180A.
Restriction: Mathematics majors have first consideration for enrollment.

MATH 184. History of Mathematics. 4 Units.
Topics vary from year to year. Some possible topics: mathematics in ancient times; the development of modern analysis; the evolution of geometric ideas. Students will be assigned individual topics for term papers.
Prerequisite: MATH 120A and MATH 140A.
Restriction: Math majors have first consideration for enrollment.

MATH 184L. History of Mathematics Lesson Lab. 1 Unit.
Aspiring math teachers research, design, present, and peer review middle school or high school math lessons that draw from history of mathematics topics.
Corequisite: MATH 184.
Prerequisite: PHY SCI 5.

MATH 189. Special Topics in Mathematics. 4 Units.
Offered from time to time, but not on a regular basis. Content and prerequisites vary with the instructor.
Prerequisite: Prerequisites vary.
Repeatability: Unlimited as topics vary.

MATH 191. Mathematical Modeling Seminar. 2 Units.
Developing, testing, and presenting mathematical models for real world problems. Students will prepare for and participate in the Mathematical Contest in Modeling (MCM) in late February. Separate contest registration fee required.
Prerequisite: MATH 3D.
Repeatability: May be taken for credit 2 times.

MATH 192. Studies in the Learning and Teaching of Secondary Mathematics. 2 Units.
Focus is on historic and current mathematical concepts related to student learning and effective math pedagogy, with fieldwork in grades 6-14.
Prerequisite: MATH 2D and MATH 2J and MATH 3D and (MATH 13 or MATH 120A or MATH 140A).
Grading Option: Pass/no pass only.
Repeatability: May be taken for credit 2 times.
Restriction: Upper-division students only. Math majors with specialization in Mathematics for Education only.

MATH 193. SMPP Capstone. 2 Units.
Capstone course for the Mathematics Subject-Matter Preparation (SMP) program. Engages students in reviewing and conducting current research on significant issues related to the teaching and learning of mathematics in the secondary classroom.
Corequisite: Recommended: MATH 192.
Repeatability: May be taken for credit 2 times.
MATH 194. Problem Solving Seminar. 2 Units.
Develops ability in analytical thinking and problem solving, using problems of the type found in the Mathematics Olympiad and the Putnam Mathematical Competition. Students taking the course in fall will prepare for and take the Putnam examination in December.

Grading Option: Pass/no pass only.
Repeatability: May be taken for credit 2 times.

MATH H195A. Honors Seminar. 4 Units.
Topics vary from year to year. Provides an integrative experience, including problem-solving and oral and written presentations. Required for the Honors Program in Mathematics and open to others with consent of instructor.

Restriction: Mathematics Honors Program students only.

MATH H195B. Honors Seminar. 4 Units.
Topics vary from year to year. Provides an integrative experience, including problem-solving and oral and written presentations. Required for the Honors Program in Mathematics and open to others with consent of instructor.

Restriction: Mathematics Honors Program students only.

MATH 199A. Special Studies in Mathematics. 2-4 Units.
Supervised reading. For outstanding undergraduate Mathematics majors in supervised but independent reading or research of mathematical topics.

Repeatability: Unlimited as topics vary.

MATH 199B. Special Studies in Mathematics. 2-4 Units.
Supervised reading. For outstanding undergraduate Mathematics majors in supervised but independent reading or research of mathematical topics.

Repeatability: Unlimited as topics vary.

MATH 199C. Special Studies in Mathematics. 2-4 Units.
Supervised reading. For outstanding undergraduate Mathematics majors in supervised but independent reading or research of mathematical topics.

Repeatability: Unlimited as topics vary.

MATH 205A. Introduction to Graduate Analysis. 5 Units.
Construction of the real number system, topology of the real line, concepts of continuity, differential and integral calculus, sequences and series of functions, equicontinuity, metric spaces, multivariable differential and integral calculus, implicit functions, curves and surfaces.

Prerequisite: MATH 2E and MATH 3A and MATH 13.

MATH 205B. Introduction to Graduate Analysis. 5 Units.
Construction of the real number system, topology of the real line, concepts of continuity, differential and integral calculus, sequences and series of functions, equicontinuity, metric spaces, multivariable differential and integral calculus, implicit functions, curves and surfaces.

Prerequisite: MATH 205A.

MATH 205C. Introduction to Graduate Analysis. 5 Units.
Construction of the real number system, topology of the real line, concepts of continuity, differential and integral calculus, sequences and series of functions, equicontinuity, metric spaces, multivariable differential and integral calculus, implicit functions, curves and surfaces.

Prerequisite: MATH 205B.

MATH 206A. Introduction to Graduate Algebra. 5 Units.
Introduction to abstract linear algebra, including bases, linear transformation, eigenvectors, canonical forms, inner products, symmetric operators. Introduction to groups, rings, and fields including examples of groups, group actions, Sylow theorems, modules over principal ideal domains, polynomials and Galois groups.

Prerequisite: MATH 3A.

MATH 206B. Introduction to Graduate Algebra. 5 Units.
Introduction to abstract linear algebra, including bases, linear transformation, eigenvectors, canonical forms, inner products, symmetric operators. Introduction to groups, rings, and fields including examples of groups, group actions, Sylow theorems, modules over principal ideal domains, polynomials and Galois groups.

Prerequisite: MATH 206A.
MATH 206C. Introduction to Graduate Algebra. 5 Units.
Introduction to abstract linear algebra, including bases, linear transformation, eigenvectors, canonical forms, inner products, symmetric operators. Introduction to groups, rings, and fields including examples of groups, group actions, Sylow theorems, modules over principal ideal domains, polynomials and Galois groups.

Prerequisite: MATH 206B.

MATH 210A. Real Analysis. 4 Units.

Prerequisite: MATH 140C.

MATH 210B. Real Analysis. 4 Units.

Prerequisite: MATH 210A.

MATH 210C. Real Analysis. 4 Units.

Prerequisite: MATH 210B.

MATH 211A. Topics in Analysis . 4 Units.
Studies in selected areas of Real Analysis, a continuation of MATH 210A-MATH 210B-MATH 210C. Topics addressed vary each quarter.

Prerequisite: MATH 210C.

MATH 211B. Topics in Analysis . 4 Units.
Studies in selected areas of Real Analysis, a continuation of MATH 210A-MATH 210B-MATH 210C. Topics addressed vary each quarter.

Prerequisite: MATH 211A.

MATH 211C. Topics in Analysis . 4 Units.
Studies in selected areas of Real Analysis, a continuation of MATH 210A-MATH 210B-MATH 210C. Topics addressed vary each quarter.

Prerequisite: MATH 211B.

MATH 218A. Introduction to Manifolds and Geometry. 4 Units.
General topology and fundamental groups, covering space; Stokes theorem on manifolds, selected topics on abstract manifold theory.

Prerequisite: MATH 205C.

MATH 218B. Introduction to Manifolds and Geometry. 4 Units.
General topology and fundamental groups, covering space; Stokes theorem on manifolds, selected topics on abstract manifold theory.

Prerequisite: MATH 218A.

MATH 218C. Introduction to Manifolds and Geometry. 4 Units.
General topology and fundamental groups, covering space; Stokes theorem on manifolds, selected topics on abstract manifold theory.

Prerequisite: MATH 218B.

MATH 220A. Analytic Function Theory. 4 Units.

Prerequisite: MATH 140C.

MATH 220B. Analytic Function Theory. 4 Units.

Prerequisite: MATH 220A.
MATH 220C. Analytic Function Theory. 4 Units.
Prerequisite: MATH 220B.

MATH 222A. Several Complex Variables and Complex Geometry. 4 Units.
Several Complex variables, d-bar problems, mappings, Kaehler geometry, de Rham and Dolbeault Theorems, Chern Classes, Hodge Theorems, Calabi conjecture, Kahler-Einstein geometry, Monge-Ampere.
Prerequisite: MATH 218C and MATH 220C.

MATH 222B. Several Complex Variables and Complex Geometry. 4 Units.
Several Complex variables, d-bar problems, mappings, Kaehler geometry, Le Rham and Dolbeault Theorems, Chern Classes, Hodge Theorems, Calabi conjecture, Kahler-Einstein geometry, Monge-Ampere.
Prerequisite: MATH 222A.

MATH 222C. Several Complex Variables and Complex Geometry. 4 Units.
Several Complex variables, d-bar problems, mappings, Kaehler geometry, Le Rham and Dolbeault Theorems, Chern Classes, Hodge Theorems, Calabi conjecture, Kahler-Einstein geometry, Monge-Ampere.
Prerequisite: MATH 222B.

MATH 225A. Introduction to Numerical Analysis and Scientific Computing. 4 Units.
Introduction to fundamentals of numerical analysis from an advanced viewpoint. Error analysis, approximation of functions, nonlinear equations.
Prerequisite: MATH 3D and ((MATH 105A and MATH 105B) or (MATH 140A and MATH 140B)) and MATH 121A and (MATH 112A or ENGRMAE 140).
Restriction: Graduate students only.

MATH 225B. Introduction to Numerical Analysis and Scientific Computing. 4 Units.
Introduction to fundamentals of numerical analysis from an advanced viewpoint. Numerical linear algebra, numerical solutions of differential equations; stability.
Prerequisite: MATH 225A.
Restriction: Graduate students only.

MATH 225C. Introduction to Numerical Analysis and Scientific Computing. 4 Units.
Introduction to fundamentals of numerical analysis from an advanced viewpoint. Numerical linear algebra, numerical solutions of differential equations; stability.
Prerequisite: MATH 225B.
Restriction: Graduate students only.

MATH 226A. Computational Differential Equations. 4 Units.
Prerequisite: MATH 3D and (MATH 112A or ENGRMAE 140) and (MATH 140B or MATH 105B).

MATH 226B. Computational Differential Equations. 4 Units.
Prerequisite: MATH 226A.

MATH 226C. Computational Differential Equations. 4 Units.
Prerequisite: MATH 226B.
MATH 227A. Mathematical and Computational Biology. 4 Units.
Prerequisite: MATH 2A and MATH 2B and MATH 3A.

MATH 227B. Mathematical and Computational Biology. 4 Units.
Prerequisite: MATH 227A.

MATH 227C. Mathematical and Computational Biology. 4 Units.
Prerequisite: MATH 227A.
Same as COMPSCI 285.

MATH 230A. Algebra. 4 Units.
Elements of the theories of groups, rings, fields, modules. Galois theory. Modules over principal ideal domains. Artinian, Noetherian, and semisimple rings and modules.
Prerequisite: MATH 120A and MATH 121A and MATH 121B.

MATH 230B. Algebra. 4 Units.
Elements of the theories of groups, rings, fields, modules. Galois theory. Modules over principal ideal domains. Artinian, Noetherian, and semisimple rings and modules.
Prerequisite: MATH 230A.

MATH 230C. Algebra. 4 Units.
Elements of the theories of groups, rings, fields, modules. Galois theory. Modules over principal ideal domains. Artinian, Noetherian, and semisimple rings and modules.
Prerequisite: MATH 230B.

MATH 232A. Algebraic Number Theory. 4 Units.
Algebraic integers, prime ideals, class groups, Dirichlet unit theorem, localization, completion, Cebotarev density theorem, L-functions, Gauss sums, diophantine equations, zeta functions over finite fields. Introduction to class field theory.
Prerequisite: MATH 230C.

MATH 232B. Algebraic Number Theory. 4 Units.
Algebraic integers, prime ideals, class groups, Dirichlet unit theorem, localization, completion, Cebotarev density theorem, L-functions, Gauss sums, diophantine equations, zeta functions over finite fields. Introduction to class field theory.
Prerequisite: MATH 232A.

MATH 232C. Algebraic Number Theory. 4 Units.
Algebraic integers, prime ideals, class groups, Dirichlet unit theorem, localization, completion, Cebotarev density theorem, L-functions, Gauss sums, diophantine equations, zeta functions over finite fields. Introduction to class field theory.
Prerequisite: MATH 232B.

MATH 233A. Algebraic Geometry. 4 Units.
Prerequisite: MATH 230C.

MATH 233B. Algebraic Geometry. 4 Units.
Prerequisite: MATH 233A.
MATH 233C. Algebraic Geometry. 4 Units.
Prerequisite: MATH 233B.

MATH 234B. Topics in Algebra. 4 Units.
Group theory, homological algebra, and other selected topics.
Prerequisite: MATH 230C.
Repeatability: May be repeated for credit unlimited times.

MATH 234C. Topics in Algebra. 4 Units.
Group theory, homological algebra, and other selected topics.
Prerequisite: MATH 234B.
Repeatability: May be repeated for credit unlimited times.

MATH 235A. Mathematics of Cryptography. 4 Units.
Mathematics of public key cryptography: encryption and signature schemes; RSA; factoring; primality testing; discrete log based cryptosystems, elliptic and hyperelliptic curve cryptography and additional topics as determined by the instructor.
Prerequisite: MATH 230C.

MATH 235B. Mathematics of Cryptography. 4 Units.
Mathematics of public key cryptography: encryption and signature schemes; RSA; factoring; primality testing; discrete log based cryptosystems, elliptic and hyperelliptic curve cryptography and additional topics as determined by the instructor.
Prerequisite: MATH 235A.

MATH 235C. Mathematics of Cryptography. 4 Units.
Mathematics of public key cryptography: encryption and signature schemes; RSA; factoring; primality testing; discrete log based cryptosystems, elliptic and hyperelliptic curve cryptography and additional topics as determined by the instructor.
Prerequisite: MATH 235B.

MATH 239A. Analytic Methods in Arithmetic Geometry. 4 Units.
Riemann zeta function, Dirichlet L-functions, prime number theorem, zeta functions over finite fields, sieve methods, zeta functions of algebraic curves, algebraic coding theory, L-Functions over number fields, L-functions of modular forms, Eisenstein series.
Prerequisite: MATH 220C and MATH 230C.

MATH 239B. Analytic Methods in Arithmetic Geometry. 4 Units.
Riemann zeta function, Dirichlet L-functions, prime number theorem, zeta functions over finite fields, sieve methods, zeta functions of algebraic curves, algebraic coding theory, L-Functions over number fields, L-functions of modular forms, Eisenstein series.
Prerequisite: MATH 239A.

MATH 239C. Analytic Methods in Arithmetic Geometry. 4 Units.
Riemann zeta function, Dirichlet L-functions, prime number theorem, zeta functions over finite fields, sieve methods, zeta functions of algebraic curves, algebraic coding theory, L-Functions over number fields, L-functions of modular forms, Eisenstein series.
Prerequisite: MATH 239B.

MATH 240A. Differential Geometry. 4 Units.
Riemannian manifolds, connections, curvature and torsion. Submanifolds, mean curvature, Gauss curvature equation. Geodesics, minimal submanifolds, first and second fundamental forms, variational formulas. Comparison theorems and their geometric applications. Hodge theory applications to geometry and topology.

MATH 240B. Differential Geometry. 4 Units.
Riemannian manifolds, connections, curvature and torsion. Submanifolds, mean curvature, Gauss curvature equation. Geodesics, minimal submanifolds, first and second fundamental forms, variational formulas. Comparison theorems and their geometric applications. Hodge theory applications to geometry and topology.
Prerequisite: MATH 240A.
MATH 240C. Differential Geometry. 4 Units.
Riemannian manifolds, connections, curvature and torsion. Submanifolds, mean curvature, Gauss curvature equation. Geodesics, minimal submanifolds, first and second fundamental forms, variational formulas. Comparison theorems and their geometric applications. Hodge theory applications to geometry and topology.
Prerequisite: MATH 240B.

MATH 245A. Topics in Differential Geometry. 4 Units.
Studies in selected areas of differential geometry, a continuation of MATH 240A-MATH 240B-MATH 240C. Topics addressed vary each quarter.
Prerequisite: MATH 240C.
Repeatability: Unlimited as topics vary.

MATH 245B. Topics in Differential Geometry. 4 Units.
Studies in selected areas of differential geometry, a continuation of MATH 240A-MATH 240B-MATH 240C. Topics addressed vary each quarter.
Prerequisite: MATH 245A.
Repeatability: Unlimited as topics vary.

MATH 245C. Topics in Differential Geometry. 4 Units.
Studies in selected areas of differential geometry, a continuation of MATH 240A-MATH 240B-MATH 240C. Topics addressed vary each quarter.
Prerequisite: MATH 245B.
Repeatability: Unlimited as topics vary.

MATH 250A. Algebraic Topology. 4 Units.
Provides fundamental materials in algebraic topology: fundamental group and covering space, homology and cohomology theory, and homotopy group.
Prerequisite: MATH 230A.

MATH 250B. Algebraic Topology. 4 Units.
Provides fundamental materials in algebraic topology: fundamental group and covering space, homology and cohomology theory, and homotopy group.
Prerequisite: MATH 250A.

MATH 250C. Algebraic Topology. 4 Units.
Provides fundamental materials in algebraic topology: fundamental group and covering space, homology and cohomology theory, and homotopy group.
Prerequisite: MATH 250B.

MATH 260A. Functional Analysis. 4 Units.
Normed linear spaces, Hilbert spaces, Banach spaces, Stone-Weierstrass Theorem, locally convex spaces, bounded operators on Banach and Hilbert spaces, the Gelfand-Neumark Theorem for commutative C*-algebras, the spectral theorem for bounded self-adjoint operators, unbounded operators on Hilbert spaces.
Prerequisite: MATH 210C and MATH 220C.

MATH 260B. Functional Analysis. 4 Units.
Normed linear spaces, Hilbert spaces, Banach spaces, Stone-Weierstrass Theorem, locally convex spaces, bounded operators on Banach and Hilbert spaces, the Gelfand-Neumark Theorem for commutative C*-algebras, the spectral theorem for bounded self-adjoint operators, unbounded operators on Hilbert spaces.
Prerequisite: MATH 260A.

MATH 260C. Functional Analysis. 4 Units.
Normed linear spaces, Hilbert spaces, Banach spaces, Stone-Weierstrass Theorem, locally convex spaces, bounded operators on Banach and Hilbert spaces, the Gelfand-Neumark Theorem for commutative C*-algebras, the spectral theorem for bounded self-adjoint operators, unbounded operators on Hilbert spaces.
Prerequisite: MATH 260B.
MATH 270A. Probability. 4 Units.
Prerequisite: MATH 130C and MATH 210C.

MATH 270B. Probability. 4 Units.
Prerequisite: MATH 270A.

MATH 270C. Probability. 4 Units.
Prerequisite: MATH 270B.

MATH 271A. Stochastic Processes. 4 Units.
Processes with independent increments, Wiener and Gaussian processes, function space integrals, stationary processes, Markov processes.
Prerequisite: MATH 210C.
Overlaps with STATS 270.

MATH 271B. Stochastic Processes. 4 Units.
Processes with independent increments, Wiener and Gaussian processes, function space integrals, stationary processes, Markov processes.
Prerequisite: MATH 271A.
Overlaps with STATS 270.

MATH 271C. Stochastic Processes. 4 Units.
Processes with independent increments, Wiener and Gaussian processes, function space integrals, stationary processes, Markov processes.
Prerequisite: MATH 271B.
Overlaps with STATS 270.

MATH 272A. Probability Models. 4 Units.
Spin systems, Ising models, contact process, exclusion process, percolation, increasing events, critical probabilities, sub- and super-critical phases, scaling theory, oriented percolation, concentration of measure, Gaussian fields, Borell's inequality, chaining, entropy.
Prerequisite: MATH 271C.

MATH 272B. Probability Models. 4 Units.
Spin systems, Ising models, contact process, exclusion process, percolation, increasing events, critical probabilities, sub- and super-critical phases, scaling theory, oriented percolation, concentration of measure, Gaussian fields, Borell's inequality, chaining, entropy.
Prerequisite: MATH 272A.

MATH 272C. Probability Models. 4 Units.
Spin systems, Ising models, contact process, exclusion process, percolation, increasing events, critical probabilities, sub- and super-critical phases, scaling theory, oriented percolation, concentration of measure, Gaussian fields, Borell's inequality, chaining, entropy.
Prerequisite: MATH 272B.

MATH 274. Topics in Probability. 4 Units.
Selected topics, such as theory of stochastic processes, martingale theory, stochastic integrals, stochastic differential equations.
Prerequisite: MATH 270C.
Repeatability: Unlimited as topics vary.

MATH 277A. Topics in Mathematical Physics. 4 Units.
Studies in selected areas of mathematical physics. Topics addressed vary each quarter.
Repeatability: May be repeated for credit unlimited times.
MATH 277B. Topics in Mathematical Physics. 4 Units.
Studies in selected areas of mathematical physics. Topics addressed vary each quarter.
Prerequisite: MATH 277A.
Repeatability: May be repeated for credit unlimited times.

MATH 277C. Topics in Mathematical Physics. 4 Units.
Studies in selected areas of mathematical physics. Topics addressed vary each quarter.
Prerequisite: MATH 277B.
Repeatability: May be repeated for credit unlimited times.

MATH 280A. Mathematical Logic. 4 Units.
Basic set theory; models, compactness, and completeness; basic model theory; Incompleteness and Gödel's Theorems; basic recursion theory; constructible sets.

MATH 280B. Mathematical Logic. 4 Units.
Basic set theory; models, compactness, and completeness; basic model theory; Incompleteness and Gödel's Theorems; basic recursion theory; constructible sets.
Prerequisite: MATH 280A.

MATH 280C. Mathematical Logic. 4 Units.
Basic set theory; models, compactness, and completeness; basic model theory; Incompleteness and Gödel's Theorems; basic recursion theory; constructible sets.
Prerequisite: MATH 280B.

MATH 281A. Set Theory. 4 Units.
Ordinals, cardinals, cardinal arithmetic, combinatorial set theory, models of set theory, Gödel's constructible universe, forcing, large cardinals, iterate forcing, inner model theory, fine structure.
Prerequisite: MATH 280C.

MATH 281B. Set Theory. 4 Units.
Ordinals, cardinals, cardinal arithmetic, combinatorial set theory, models of set theory, Gödel's constructible universe, forcing, large cardinals, iterate forcing, inner model theory, fine structure.
Prerequisite: MATH 281A.

MATH 281C. Set Theory. 4 Units.
Ordinals, cardinals, cardinal arithmetic, combinatorial set theory, models of set theory, Gödel's constructible universe, forcing, large cardinals, iterate forcing, inner model theory, fine structure.
Prerequisite: MATH 281B.

MATH 282A. Model Theory. 4 Units.
Prerequisite: MATH 280C.

MATH 282B. Model Theory. 4 Units.
Prerequisite: MATH 282A.

MATH 282C. Model Theory. 4 Units.
Prerequisite: MATH 282B.
MATH 285A. Topics in Mathematical Logic. 4 Units.
Studies in selected areas of mathematical logic, a continuation of MATH 280A-MATH 280B-MATH 280C. Topics addressed vary each quarter.
Prerequisite: MATH 280C.
Repeatability: Unlimited as topics vary.

MATH 285B. Topics in Mathematical Logic. 4 Units.
Studies in selected areas of mathematical logic, a continuation of MATH 280A-MATH 280B-MATH 280C. Topics addressed vary each quarter.
Prerequisite: MATH 285A.
Repeatability: Unlimited as topics vary.

MATH 285C. Topics in Mathematical Logic. 4 Units.
Studies in selected areas of mathematical logic, a continuation of MATH 280A-MATH 280B-MATH 280C. Topics addressed vary each quarter.
Prerequisite: MATH 285B.
Repeatability: Unlimited as topics vary.

MATH 290A. Methods in Applied Mathematics. 4 Units.
Prerequisite: MATH 290A.

MATH 290B. Methods in Applied Mathematics. 4 Units.
Prerequisite: MATH 290B.

MATH 290C. Methods in Applied Mathematics. 4 Units.
Prerequisite: MATH 290C.

MATH 291C. Topics in Applied and Computational Math. 4 Units.
Studies in selected areas of applied and computational mathematics. Topics addressed vary each quarter.
Repeatability: May be repeated for credit unlimited times.

MATH 295A. Partial Differential Equations. 4 Units.
Prerequisite: MATH 210C and MATH 112B and MATH 112C.

MATH 295B. Partial Differential Equations. 4 Units.
Prerequisite: MATH 295A.

MATH 295C. Partial Differential Equations. 4 Units.
Prerequisite: MATH 295B.
MATH 296. Topics in Partial Differential Equations. 4 Units.
Studies in selected areas of partial differential equations, a continuation of MATH 295A-MATH 295B-MATH 295C. Topics addressed vary each quarter.
Prerequisite: MATH 295C.
Repeatability: Unlimited as topics vary.
Restriction: Graduate students only.

MATH 297. Mathematics Colloquium. 1 Unit.
Weekly colloquia on topics of current interest in mathematics.
Grading Option: Satisfactory/unsatisfactory only.
Repeatability: May be repeated for credit unlimited times.

MATH 298A. Seminar. 1-3 Units.
Seminars organized for detailed discussion of research problems of current interest in the Department. The format, content, frequency, and course value are variable.
Grading Option: Satisfactory/unsatisfactory only.
Repeatability: Unlimited as topics vary.

MATH 298B. Seminar. 2 Units.
Seminars organized for detailed discussion of research problems of current interest in the Department. The format, content, frequency, and course value are variable.
Prerequisite: MATH 298A.
Grading Option: Satisfactory/unsatisfactory only.
Repeatability: Unlimited as topics vary.

MATH 298C. Seminar. 2 Units.
Seminars organized for detailed discussion of research problems of current interest in the Department. The format, content, frequency, and course value are variable.
Prerequisite: MATH 298B.
Grading Option: Satisfactory/unsatisfactory only.
Repeatability: Unlimited as topics vary.

MATH 299A. Supervised Reading and Research. 1-12 Units.
Supervised reading and research with Mathematics faculty.
Repeatability: May be repeated for credit unlimited times.

MATH 299B. Supervised Reading and Research. 1-12 Units.
Supervised reading and research with Mathematics faculty.
Prerequisite: MATH 299A.
Repeatability: May be repeated for credit unlimited times.

MATH 299C. Supervised Reading and Research. 1-12 Units.
Supervised reading and research with Mathematics faculty.
Prerequisite: MATH 299B.
Repeatability: May be repeated for credit unlimited times.

MATH 399. University Teaching. 1-4 Units.
Limited to Teaching Assistants.
Grading Option: Satisfactory/unsatisfactory only.
Repeatability: May be repeated for credit unlimited times.
Physical Science Courses

PHY SCI 5. California Teach 1: Introduction to Science and Mathematics Teaching. 3 Units.
First in a series for students interested in becoming middle or high school teachers of mathematics or science. Students gain an understanding of effective, research-based teaching strategies. Includes supervised field experience in a K-12 classroom.

Same as BIO SCI 14.

Restriction: School of Physical Sciences, School of Biological Sciences, School of Information and Computer Sciences, and School of Engineering majors have first consideration for enrollment.

PHY SCI 105. California Teach 2: Middle School Science and Mathematics Teaching. 3 Units.
Second in a series for students interested in becoming middle or high school teachers of mathematics or science. Students gain an understanding of effective, research-based teaching strategies for grades 6-8. Includes supervised field experience in a middle school classroom.

Prerequisite: PHY SCI 5.

Same as BIO SCI 101.

Restriction: School of Physical Sciences, School of Biological Sciences, School of Information and Computer Sciences, and School of Engineering majors have first consideration for enrollment.

PHY SCI 106. California Teach 3: High School Science and Mathematics Teaching. 2 Units.
Capstone of a series of three seminars for students interested in becoming secondary mathematics or science teachers. Meets six times for students to understand effective, research-based teaching strategies. Includes an opportunity to experience teaching in a high school.

Prerequisite: (PHY SCI 5 or BIO SCI 14) and (PHY SCI 105 or BIO SCI 101).

Same as BIO SCI 102.

Restriction: School of Physical Sciences, School of Biological Sciences, School of Information and Computer Sciences, and School of Engineering majors have first consideration for enrollment.

PHY SCI 139W. Technical Writing and Communication Skills. 4 Units.
Workshop in writing technical reports, journal articles, proposals. Oral presentations. Communicating with the public. May not be used in satisfaction of any School or departmental requirement.

Prerequisite: Satisfactory completion of the Lower-Division Writing requirement.

Restriction: Upper-division students only. School of Physical Sciences majors have first consideration for enrollment.

(Ib)

PHY SCI 220. Science Communication Skills. 2 Units.
Development of effective communication skills, oral and written presentations. Topics range from the art of creating keynote slides to strategically crafting a personal story, culminating in a live presentation to an invited audience.

Physics Courses

PHYSICS 2. Introduction to Mathematical Methods for Physics. 4 Units.
Provides the applied mathematics and problem solving/presentation skills necessary for success in an introductory physics sequence. Focuses on practical exercises in problem solving. Covers kinematics in one and two dimensions in detail. Additional topics include vectors, differentiation, and integration.

Corequisite: MATH 2A.
Prerequisite: Passing score on the UCI Physics Placement Exam.

PHYSICS 3A. Basic Physics. 4 Units.
Vectors; motion, force, and energy. Course may be offered online.

Corequisite: MATH 2A.

(Ib, Va)
PHYSICS 3B. Basic Physics. 4 Units.
Fluids; heat; electricity and magnetism.
Prerequisite: PHYSICS 3A.

(II, Va)

PHYSICS 3C. Basic Physics. 4 Units.
Waves and sound; optics; quantum ideas; atomic and nuclear physics; relativity.
Corequisite: MATH 2B.
Prerequisite: PHYSICS 3B.

(II, Va)

PHYSICS 3LB. Basic Physics Laboratory. 1.5 Unit.
Practical applications of electronics and classical physics to biology. Goals include skill to use oscilloscope and other basic instrumentation. Materials fee.

PHYSICS 3LC. Basic Physics Laboratory. 1.5 Unit.
Practical applications of physics to medical imaging. Topics include optics, radioactivity, and acoustics. Materials fee.

PHYSICS 7C. Classical Physics. 4 Units.
Topics include force; energy; momentum; rotation and gravity.
Corequisite: PHYSICS 7LC and MATH 2B.
Prerequisite: PHYSICS 2 or (Math 2D and CHEM 1C or CHEM H2C or CHEM M3C) or passing score on the UCI Physics Placement Exam. PHYSICS 2 with a grade of C or better.

Restriction: Physics majors have first consideration for enrollment in one section of this course. PHYSICS 7C may not be taken for credit after PHYSICS 7A and PHYSICS 7B.

(II, Va)

PHYSICS 7D. Classical Physics. 4 Units.
Electricity and magnetism.
Corequisite: PHYSICS 7LD and MATH 2D.
Prerequisite: PHYSICS 7C and MATH 2B.

Restriction: Physics majors have first consideration for enrollment in one section of this course.

(II, Va)

PHYSICS 7E. Classical Physics. 4 Units.
Fluids; oscillations; waves; and optics. Course may be offered online.
Prerequisite: PHYSICS 7C and MATH 2B.

Restriction: Physics majors have first consideration for enrollment in one section of this course.

(II, Va)

PHYSICS 7LC. Classical Physics Laboratory. 1 Unit.
Experiments related to lecture topics in Physics 7C. Materials fee.
Corequisite: PHYSICS 7C.

Overlaps with PHYSICS 7LA, PHYSICS 7LB.

Restriction: Physics majors have first consideration for enrollment.

PHYSICS 7LD. Classical Physics Laboratory. 1 Unit.
Electricity and magnetism.
Corequisite: PHYSICS 7D.

Restriction: Physics majors have first consideration for enrollment in select section(s) of this course.
PHYSICS 12. Science Fiction and Science Fact. 4 Units.
An introduction to fundamental physics principles, the scientific process, and the mathematical language of science, used to analyze topics drawn from superheroes, science fiction works, and current science news to distinguish science fiction and science fact. Course may be offered online.

Overlaps with PHYSICS 21.

(II, Va)

The physics of society’s energy production and consumption, and of their influences on the environment. Topics include fossil and renewable energy resources; nuclear power; prospects for a hydrogen economy; efficient and environmentally benign transportation; efficient home and commercial energy usage.

Restriction: Non-School of Physical Sciences majors only. Non-Physics majors only.

(II)

PHYSICS 15. Physics of Music. 4 Units.
Introduces basic physical principles underlying generation and properties of music, including basic properties of sound waves, musical scales and temperament, musical instruments, and acoustics of music halls. No mathematics background required, but high school algebra is recommended.

(II)

PHYSICS 17. Physics of Athletics. 4 Units.
Introduces basic physical principles behind motion. Examples are drawn from a range of athletic endeavors (such as ice skating, baseball, diving, and dance). No mathematics background required, but high school algebra is recommended.

(II)

PHYSICS 18. How Things Work. 4 Units.
Survey of the physical basis of modern technology, with an emphasis on electronics and materials. Topics include power generation and distribution, communication (radio, TV, telephone, computers, tape recorders, CD players), imaging (optics, x-rays, MRI), and modern materials (alloys, semiconductors, superconductors). Course may be offered online.

(II)

PHYSICS 19. Great Ideas of Physics. 4 Units.
Introduces nonscience majors to physics, examining important breakthroughs and controversies. Potential topics: Einstein's Relativity; Heisenberg's Uncertainty Principle; black holes; extra-dimensions; antimatter. Case studies illustrate the essential nature of scientific review and independent confirmation of results. No mathematics background required.

(II)

PHYSICS 20A. Introduction to Astronomy. 4 Units.
History of astronomy. Underlying physics. Objects in the solar system and how they are studied. Properties of stars: their formation, structure, and evolution. Pulsars and black holes. Galaxies and quasars. Course may be offered online.

(II, Va)

PHYSICS 20B. Cosmology: Man’s Place in the Universe. 4 Units.
“Cook’s Tour” of the universe. Ancient world models. Evidence for universal expansion; the size and age of the universe and how it all began. The long-range future and how to decide the right model. Anthropic principle. Course may be offered online.

(II, Va)

PHYSICS 20C. Observational Astronomy. 4 Units.
Basics of observing the night sky. Includes using UCI Observatory telescopes. Discusses fundamental observational techniques used to determine orbits and masses of objects, identify asteroids, classify stars, derive star cluster ages, measure the Universe’s expansion rate and dark matter content. Course may be offered online.

Prerequisite: PHYSICS 20A or PHYSICS 20B or MATH 1B or MATH 2A.

(II, Va)
PHYSICS 20D. Space Science. 4 Units.
Motions of planets, satellites, and rockets. Propulsion mechanisms and space flight. The solar radiation field and its influence on planets. The interplanetary medium, solar wind, and solar-terrestrial relations. Course may be offered online.

(II, Va)

PHYSICS 20E. Life in the Universe. 4 Units.
An overview of the scientific quest to discover life elsewhere in the universe. Topics include the origin of life on Earth, Mars, extra-solar planets, interstellar travel, and extra-terrestrial intelligence.

(II, Va)

PHYSICS 21. Special Topics in Physics. 4 Units.
Topics addressed vary each quarter. Past topics have included physics and music, Newton, planetary science. Lectures on areas of special interest in physics used to introduce students to scientific method, fundamental laws of science, qualitative and quantitative analysis of data.

Repeatability: Unlimited as topics vary.

Overlaps with PHYSICS 12, PHYSICS XI12.

(II)

PHYSICS 50. Mathematical Methods for Physical Science. 4 Units.
Mathematica and its applications to linear algebra, differential equations, and complex functions. Fourier series and Fourier transforms. Other topics in integral transforms. Course may be offered online.

Corequisite: MATH 2E.
Prerequisite: MATH 2J or MATH 3A.

Overlaps with PHYSICS 100.

PHYSICS 51A. Modern Physics. 4 Units.
Wave-particle duality; quantum mechanics; special relativity; statistical mechanics.

Prerequisite: (PHYSICS 7E or PHYSICS 3C) and MATH 2D.

Overlaps with PHYSICS 61A.

Restriction: Non-Physics majors only.

PHYSICS 51B. Modern Physics. 4 Units.
Atoms; molecules; solids; nuclei; elementary particles.

Prerequisite: PHYSICS 51A or PHYSICS 61A.

Overlaps with PHYSICS 61B.

Restriction: Non-Physics majors only.

PHYSICS 52A. Fundamentals of Experimental Physics. 2 Units.
Optics: lenses, mirrors, polarization, lasers, optical fibers, interference, spectra. Materials fee.

Corequisite: PHYSICS 7E or PHYSICS 3C.

Restriction: Physics majors have first consideration for enrollment in select section(s) of this course.

PHYSICS 52B. Fundamentals of Experimental Physics. 2 Units.

Prerequisite: PHYSICS 7D or PHYSICS 3B.

Restriction: Physics majors have first consideration for enrollment in select section(s) of this course.
PHYSICS 52C. Fundamentals of Experimental Physics. 2 Units.
Data analysis: random and systematic errors, curve fitting; nuclear counting; quantum experiments. Error analysis: random and systematic errors, curve fitting, nuclear counting, and quantum experiments. Materials fee.

Prerequisite: PHYSICS 51A or PHYSICS 61A.

Restriction: Physics majors have first consideration for enrollment in select section(s) of this course.

PHYSICS 53. Introduction to C and Numerical Analysis. 4 Units.
Introduction to structured programming; in-depth training in C. Elementary numerical methods applied to physics problems.

Prerequisite: (MATH 2J or MATH 3A) and MATH 3D.

PHYSICS 60. Thermal Physics. 4 Units.
Introduction to thermodynamics and systems of many particles. Topics include first and second laws of thermodynamics, ideal gas laws, kinetic theory, heat engines and refrigerators, thermodynamic potentials, phase transitions, dilute solutions, chemical equilibrium, and basic statistical distributions.

Prerequisite: (PHYSICS 7E or PHYSICS 3C) and MATH 2D.

Restriction: Physics majors only.

PHYSICS 61A. Modern Physics for Majors. 4 Units.
Wave-particle duality; Schrödinger equation; angular momentum.

Prerequisite: (PHYSICS 7E or PHYSICS 3C) and MATH 2D.

Overlaps with PHYSICS 51A.

Restriction: Physics majors only.

PHYSICS 61B. Modern Physics for Majors. 4 Units.
Atomic transitions; molecules; solids; nuclei; elementary particles; cosmological models.

Prerequisite: PHYSICS 61A or PHYSICS 51A.

Overlaps with PHYSICS 51B.

Restriction: Physics majors only.

PHYSICS H90. The Idiom and Practice of Science. 4 Units.
A series of fundamental and applied scientific problems of social relevance. Possible topics include Newton's Law, calculus, earthquake physics, and radiation.

Restriction: Campuswide Honors Program students only.

(II, Va)

PHYSICS 99. General Physics Seminar. 1 Unit.
Designed to introduce undergraduate students to current topics in physics. Focus is discussion of selected readings on current research issues.

Repeatability: Unlimited as topics vary.

PHYSICS 100. Computational Methods. 4 Units.
Mathematical and numerical analysis using Mathematica and C programming, as applied to problems in physical science.

Overlaps with PHYSICS 50.

Concurrent with PHYSICS 229A.

PHYSICS 106. Laboratory Skills. 4-6 Units.
Introduces students to a variety of practical laboratory techniques, including lock-in, boxcar, coincidence counting, noise filtering, PID control, properties of common transducers, computer interfacing to instruments, vacuum technology, laboratory safety, basic mechanical design, and shop skills.

Concurrent with PHYSICS 206 and CHEM 206.
PHYSICS 111A. Classical Mechanics. 4 Units.
One-dimensional motion and oscillations; three-dimensional motion, non-inertial coordinates, conservation laws, and Lagrangian and Hamiltonian
dynamics; rigid body motion and relativity.
Prerequisite: (PHYSICS 7E or PHYSICS 3C) and PHYSICS 50.

PHYSICS 111B. Classical Mechanics. 4 Units.
One-dimensional motion and oscillations; three-dimensional motion, non-inertial coordinates, conservation laws, and Lagrangian and Hamiltonian
dynamics; rigid body motion and relativity.
Prerequisite: PHYSICS 111A.

PHYSICS 112A. Electromagnetic Theory. 4 Units.
Electric, magnetic, and gravitational fields and potentials; electrodynamics; mechanical and electromagnetic waves and radiation.
Prerequisite: (PHYSICS 7D or PHYSICS 3B) and PHYSICS 50.

PHYSICS 112B. Electromagnetic Theory. 4 Units.
Electric, magnetic, and gravitational fields and potentials; electrodynamics; mechanical and electromagnetic waves and radiation.
Prerequisite: PHYSICS 7E and PHYSICS 112A.

PHYSICS 113A. Quantum Physics. 4 Units.
Inadequacy of classical physics; time independent and time dependent Schrodinger equation; systems in one, two, and three dimensions; matrices;
Hermitian operators; symmetries; angular momentum; perturbation theory; scattering theory; applications to atomic structure; emphasis on
phenomenology.
Prerequisite: (PHYSICS 51A or PHYSICS 61A) and PHYSICS 50.

PHYSICS 113B. Quantum Physics. 4 Units.
Inadequacy of classical physics; time independent and time dependent Schrodinger equation; systems in one, two, and three dimensions; matrices;
Hermitian operators; symmetries; angular momentum; perturbation theory; scattering theory; applications to atomic structure; emphasis on
phenomenology.
Prerequisite: PHYSICS 111B and PHYSICS 112B and PHYSICS 113A.

PHYSICS 113C. Quantum Physics. 4 Units.
Inadequacy of classical physics; time independent and time dependent Schrodinger equation; systems in one, two, and three dimensions; matrices;
Hermitian operators; symmetries; angular momentum; perturbation theory; scattering theory; applications to atomic structure; emphasis on
phenomenology.
Prerequisite: PHYSICS 111B and PHYSICS 112B and PHYSICS 113B.

PHYSICS 115A. Statistical Physics. 4 Units.
Microscopic theory of temperature, heat, and entropy; kinetic theory; multicomponent systems; quantum statistics.
Prerequisite: PHYSICS 50 and PHYSICS 60.

PHYSICS 115B. Thermodynamics. 4 Units.
Macroscopic theory of temperature, heat, and entropy; mathematical relationships of thermodynamics; heat engines; phase transitions.
Prerequisite: PHYSICS 115A.

PHYSICS 116. Relativity and Black Holes. 4 Units.
Introduces students to both special and general relativity; includes the formalism of four-vectors, equivalence principle, curved space-time, and modern
issues with black holes.
Corequisite: PHYSICS 111A.
Prerequisite: PHYSICS 50.

PHYSICS 120. Electronics for Scientists. 4 Units.
Applications of modern semiconductor devices to physical instrumentation. Characteristics of semiconductor devices, integrated circuits, analog and
digital circuits. Materials fee.
Prerequisite: PHYSICS 52B.

Concurrent with PHYSICS 220.
PHYSICS 121W. Advanced Laboratory. 4 Units.
Experiments in atomic, condensed matter, nuclear, particle, and plasma physics. Introduction to instrumentation and a first experience in the research laboratory.

Prerequisite: (PHYSICS 51B or PHYSICS 61B) and (PHYSICS 52C or PHYSICS 193) and (PHYSICS 194 or EDUC 143BW).

Repeatability: May be taken for credit 3 times.

Restriction: Physics majors only.

(Ib)

PHYSICS 125A. Mathematical Physics. 4 Units.
Complex variables; Legendre and Bessel functions; complete sets of orthogonal functions; partial differential equations; integral equations; calculus of variations; coordinate transformations; special functions and series.

Prerequisite: PHYSICS 50 and MATH 3D.

PHYSICS 125B. Mathematical Physics. 4 Units.
Complex variables; Legendre and Bessel functions; complete sets of orthogonal functions; partial differential equations; integral equations; calculus of variations; coordinate transformations; special functions and series.

Prerequisite: PHYSICS 125A and PHYSICS 113A.

PHYSICS 133. Introduction to Condensed Matter Physics. 4 Units.
Phenomena of solids and their interpretation in terms of quantum theory.

Prerequisite: PHYSICS 113B and PHYSICS 115A.

PHYSICS 134A. Physical and Geometrical Optics. 4 Units.
Focuses on the practical aspects of optics and optical engineering, starting at the fundamentals. Topics include geometrical optics, ray tracing, polarization optics, interferometers, and diffractive optics.

Corequisite: PHYSICS 112B.
Prerequisite: PHYSICS 112A.

Concurrent with CBEMS 242A and CHEM 242A.

PHYSICS 135. Plasma Physics. 4 Units.
Basic concepts, orbits, kinetic and fluid equations, Coulomb collisions, fluctuations, scattering, radiation.

Prerequisite: PHYSICS 112B.

Concurrent with PHYSICS 239A.

PHYSICS 136. Introduction to Particle Physics. 4 Units.
Experimental techniques and theoretical concepts of high-energy phenomena: accelerators and detectors; classification of particles and interactions; particle properties; symmetries and mass multiplets; production and decay mechanisms.

Prerequisite: PHYSICS 113B.

PHYSICS 137. Introduction to Cosmology. 4 Units.
Solution of the differential equations governing the expansion of the Universe. Observational determinations of the parameters governing the expansion. Big Bang inflation, primordial nucleosynthesis, and cosmic microwave background. Dark matter, dark energy, and large-scale structure of the Universe.

Prerequisite: PHYSICS 111A.

PHYSICS 138. Extragalactic Astrophysics. 4 Units.

Prerequisite: PHYSICS 111A.

PHYSICS 139. Observational Astrophysics. 4 Units.
Telescopes and astronomical observations, imaging with CCD detectors and image processing techniques. Photometry and spectroscopy of stars, galaxies, and quasars. Advanced imaging techniques such as deconvolution, adaptive optics, and interferometry.

Prerequisite: PHYSICS 52A and PHYSICS 52B and PHYSICS 52C and PHYSICS 53.
PHYSICS 144. Stellar Astrophysics. 4 Units.
Stars: their structure and evolution; physical state of the interior; the Hertzprung-Russell diagram, stellar classification, and physical principles responsible for the classification; star formation; nuclear burning; giant and dwarf stars; neutron stars and black holes.
Prerequisite: (PHYSICS 51A or PHYSICS 61A) and PHYSICS 111A and PHYSICS 112A.

PHYSICS 145. High-Energy Astrophysics. 4 Units.
Production of radiation by high-energy particles, white dwarfs, neutron stars, and black holes. Evolution of galactic nuclei, radio galaxies, quasars, and pulsars. Cosmic rays and the cosmic background radiation.
Prerequisite: (PHYSICS 51A or PHYSICS 61A) and PHYSICS 111A and PHYSICS 112A.

PHYSICS 146A. Biophysics of Molecules and Molecular Machines. 4 Units.
Physical concepts and experimental and computational techniques used to study the structure and function of biological molecules and molecular machines with examples from enzyme action, protein folding, molecular motors, photobiology, chemotaxis, and vision.
Prerequisite: PHYSICS 115A.
Concurrent with PHYSICS 230A.

PHYSICS 146B. Biophysics of Molecules and Molecular Machines. 4 Units.
Physical concepts and experimental and computational techniques used to study the structure and function of biological molecules and molecular machines with examples from enzyme action, protein folding, molecular motors, photobiology, chemotaxis, and vision.
Prerequisite: PHYSICS 115A.
Concurrent with PHYSICS 230B.

PHYSICS 147A. Principles of Imaging. 4 Units.
Linear systems, probability and random processes, image processing, projection imaging, tomographic imaging.
Prerequisite: PHYSICS 50.
Concurrent with PHYSICS 233A and EECS 202A.

PHYSICS 147B. Techniques in Medical Imaging I: X-ray, Nuclear, and NMR Imaging. 4 Units.
Ionizing radiation, planar and tomographic radiographic and nuclear imaging, magnetism, NMR, MRI imaging.
Prerequisite: PHYSICS 147A.
Concurrent with PHYSICS 233B and EECS 202B.

PHYSICS 147C. Techniques in Medical Imaging II: Ultrasound, Electrophysiological, Optical. 4 Units.
Sound and ultrasound, ultrasonic imaging, physiological electromagnetism, EEG, MEG, ECG, MCG, optical properties of tissues, fluorescence and bioluminescence, MR impedance imaging, MR spectroscopy, electron spin resonance and ESR imaging.
Prerequisite: PHYSICS 147B.
Concurrent with PHYSICS 233C and EECS 202C.

PHYSICS 150. Special Topics in Physics and Astronomy. 4 Units.
Current topics in physics. Includes topics from nano-science, biological sciences, astrophysics, and the common use of estimation across subdisciplines within physics.
Repeatability: Unlimited as topics vary.

PHYSICS 191. Field Experience in Physics Education. 1-4 Units.
Students develop and perform physics assemblies at neighboring public schools.
Prerequisite: PHYSICS 7C and PHYSICS 7D and PHYSICS 7E.
Grading Option: Pass/no pass only.
Repeatability: May be taken for credit for 8 units.
PHYSICS 192. Tutoring in Physics. 1-2 Units.
Formalizes the already existing free tutoring for the lower-division physics courses that is provided by the Society of Physics Students (SPS). Includes instructions on tutoring techniques.
Prerequisite: PHYSICS 7E.
Grading Option: Pass/no pass only.
Repeatability: May be taken for credit for 12 units.
Restriction: Society of Physics Students (SPS) tutoring program students only.

PHYSICS 193. Research Methods. 4 Units.
Explores tools of inquiry for developing and implementing science research projects. Students undertake independent projects requiring data collection, analysis, and modeling, and the organization and presentation of results. Additional topics include ethical issues and role of scientific literature.
Prerequisite: BIO SCI 14 or PHY SCI 5.
Same as BIO SCI 108, CHEM 193.

PHYSICS 194. Research Communication for Physics Majors. 2 Units.
Students learn the fundamentals of communicating about research. Topics include preparing abstracts, proposals, and literature reviews. Provides preparation for presentation of independent research projects in PHYSICS 121 and PHYSICS 196.
Prerequisite: PHYSICS 61B. Satisfactory completion of the Lower-Division Writing requirement.
Restriction: Physics majors only.

PHYSICS 195. Undergraduate Research. 4 Units.
Independent research under the guidance of a Physics faculty member.
Grading Option: Pass/no pass only.
Repeatability: May be repeated for credit unlimited times.
Restriction: Juniors only. Physics majors only.

PHYSICS 196A. Thesis in Physics I. 2 Units.
Independent research for seniors conducted under the guidance of a faculty member. Students’ research results are discussed in oral presentations, and a written proposal, progress report, and thesis are submitted.
Corequisite: PHYSICS 194.
Overlaps with PHYSICS H196A.
Restriction: Physics majors only.

PHYSICS 196B. Thesis in Physics II. 4 Units.
Independent research for seniors conducted under the guidance of a faculty member. Students’ research results are discussed in oral presentations, and a written proposal, progress report, and thesis are submitted.
Prerequisite: PHYSICS 196A.
Overlaps with PHYSICS H196B.
Restriction: Physics majors only.

PHYSICS 196C. Thesis in Physics III. 4 Units.
Independent research for seniors conducted under the guidance of a faculty member. Students’ research results are discussed in oral presentations, and a written proposal, progress report, and thesis are submitted.
Prerequisite: PHYSICS 196B.
Overlaps with PHYSICS H196C, PHYSICS 197.
Restriction: Physics majors only.
PHYSICS H196A. Honors Thesis in Physics I. 2 Units.
Independent research for seniors conducted under the guidance of a faculty member. Students’ research results are discussed in oral presentations, and a written proposal, progress report, and thesis are submitted.

Corequisite: PHYSICS 194.

Overlaps with PHYSICS 196A.

Restriction: Physics majors only. Honors Program in Physics students only. Campuswide Honors Program students only.

PHYSICS H196B. Honors Thesis in Physics II. 4 Units.
Independent research for seniors conducted under the guidance of a faculty member. Students’ research results are discussed in oral presentations, and a written proposal, progress report, and thesis are submitted.

Prerequisite: PHYSICS H196A.

Overlaps with PHYSICS 196B.

Restriction: Physics majors only. Honors Program in Physics students only. Campuswide Honors Program students only.

PHYSICS H196C. Honors Thesis in Physics III. 4 Units.
Independent research for seniors conducted under the guidance of a faculty member. Students’ research results are discussed in oral presentations, and a written proposal, progress report, and thesis are submitted.

Prerequisite: PHYSICS H196B.

Overlaps with PHYSICS 196C.

Restriction: Physics majors only. Honors Program in Physics students only. Campuswide Honors Program students only.

PHYSICS 199. Readings on Special Topics. 1-4 Units.
Readings in selected areas of Physics. Topics addressed vary each quarter.

Grading Option: Pass/no pass only.

Repeatability: May be repeated for credit unlimited times.

PHYSICS 206. Laboratory Skills. 4-6 Units.
Introduces students to a variety of practical laboratory techniques, including lock-in, boxcar, coincidence counting, noise filtering, PID control, properties of common transducers, computer interfacing to instruments, vacuum technology, laboratory safety, basic mechanical design, and shop skills. Materials fee.

Same as CHEM 206.

Concurrent with PHYSICS 106.

PHYSICS 207. Chemistry for Physicists. 4 Units.
Introduction to fundamental concepts in molecular structure and reactivity: theory of bonding, valence and molecular orbitals; structure and reactivity in inorganic chemistry; elements in molecular group theory; nomenclature in organic chemistry; and survey of macromolecules.

Same as CHEM 207.

PHYSICS 208. Mathematics for Chemists. 4 Units.
Applications of mathematics to physical and chemical problems. Calculus of special functions, complex variables and vectors; linear vector spaces and eigenvalue problems. Differential equations.

Same as CHEM 208.

PHYSICS 211. Classical Mechanics. 4 Units.
Variational principles, Lagrange's equations; applications to two body problems, small oscillation theory, and other phenomena. Hamilton's equations. Hamilton-Jacobi theory. Canonical transformations.

Restriction: Graduate students only.

PHYSICS 212A. Mathematical Physics. 4 Units.
Complex variables and integration; ordinary and partial differential equations; the eigenvalue problem.

Restriction: Graduate students only.
PHYSICS 213A. Electromagnetic Theory. 4 Units.
Electrostatics; magnetostatics; relativity; classical electron theory; fields in vacuum and matter; retardation; radiation and absorption; dispersion; propagation of light; diffraction; geometric optics; theories of the electric and magnetic properties of materials; scattering.

PHYSICS 213B. Electromagnetic Theory. 4 Units.
Electrostatics; magnetostatics; relativity; classical electron theory; fields in vacuum and matter; retardation; radiation and absorption; dispersion; propagation of light; diffraction; geometric optics; theories of the electric and magnetic properties of materials; scattering.
Prerequisite: Physics 213A.

PHYSICS 214A. Statistical Physics. 4 Units.
Maxwell-Boltzmann, Bose-Einstein, Fermi-Dirac statistics; ideal and imperfect gases; thermodynamic properties of solids; transport theory.
Restriction: Graduate students only.

PHYSICS 214B. Statistical Physics. 4 Units.
Phase transitions; critical phenomena; cooperative phenomena; fluctuations.
Prerequisite: PHYSICS 214A.
Restriction: Graduate students only.

PHYSICS 214C. Many Body Theory. 4 Units.
Application of field theory methods, perturbative and non-perturbative, to many particle systems; second quantization, Feynman diagrams, linear response theory, and functional integral methods applied to the ground state and at finite temperature.
Prerequisite: PHYSICS 214A and PHYSICS 215A and PHYSICS 215B.
Restriction: Graduate students only.

PHYSICS 215A. Quantum Mechanics. 4 Units.
Foundations; Dirac notation; basic operators and their eigenstates; perturbation theory; spin.
Restriction: Graduate students only.

PHYSICS 215B. Quantum Mechanics. 4 Units.
Atomic physics; scattering theory, formal collision theory; semi-classical radiation theory; many body systems.
Prerequisite: PHYSICS 215A.
Restriction: Graduate students only.

PHYSICS 220. Electronics for Scientists. 4 Units.
Applications of modern semiconductor devices to physical instrumentation. Characteristics of semiconductor devices, integrated circuits, analog and digital circuits.
Restriction: Graduate students only.

PHYSICS 222. Continuum Mechanics. 4 Units.
Introduction to the continuum limit and stress and strain tensors. Hydrodynamics of perfect fluids; two-dimensional problems, motion of incompressible viscous fluids, Navier Stokes equations. Basic elasticity theory. Description of viscoelastic materials. Introduction to nonlinear behavior instabilities.

PHYSICS 223. Numerical Methods. 4 Units.
Introduction to theory and practice of modern numerical methods. Techniques are drawn from topics such as solution of differential equations, Monte Carlo methods, Fast Fourier transforms, and evaluation of special functions.

PHYSICS 228. Electromagnetism. 4 Units.
Maxwell’s equations, electrodynamics, electromagnetic waves and radiation, wave propagation in media, interference and quantum optics, coherent and incoherent radiation, with practical applications in interferometry, lasers, waveguides, and optical instrumentation.
Same as CHEM 228.
PHYSICS 229A. Computational Methods. 4 Units.
Mathematical and numerical analysis using Mathematica and C programming, as applied to problems in physical science.

Same as CHEM 229A.
Concurrent with PHYSICS 100.

PHYSICS 229B. Computational Methods. 4 Units.
Mathematical and numerical analysis using Mathematica and C programming, as applied to problems in physical science.

Same as CHEM 229B.

PHYSICS 230A. Biophysics of Molecules and Molecular Machines. 4 Units.
Physical concepts and experimental and computational techniques used to study the structure and function of biological molecules and molecular machines with examples from enzyme action, protein folding, molecular motors, photobiology, chemotaxis, and vision.

Concurrent with PHYSICS 146A.

PHYSICS 230B. Biophysics of Molecules and Molecular Machines. 4 Units.
Physical concepts and experimental and computational techniques used to study the structure and function of biological molecules and molecular machines with examples from enzyme action, protein folding, molecular motors, photobiology, chemotaxis, and vision.

Concurrent with PHYSICS 146B.

PHYSICS 231. Special Topics in Computational Physics. 4 Units.
Modern symbolic and numerical techniques on state-of-the-art computers for solving problems in classical and quantum mechanics, fluids, electromagnetism, and mathematical physics.

Prerequisite: PHYSICS 223 or PHYSICS 229A.

Repeatability: May be repeated for credit unlimited times.

Restriction: Graduate students only.

PHYSICS 233A. Principles of Imaging. 4 Units.
Linear systems, probability and random processes, image processing, projecting imaging, tomographic imaging.

Prerequisite: PHYSICS 51B or PHYSICS 61B.

Same as EECS 202A.

Restriction: Graduate students only.

Concurrent with PHYSICS 147A.

PHYSICS 233B. Techniques in Medical Imaging I: X-ray, Nuclear, and NMR Imaging. 4 Units.
Ionizing radiation, planar and tomographic radiographic and nuclear imaging, magnetism, NMR, MRI imaging.

Prerequisite: EECS 202A.

Same as EECS 202B.

Restriction: Graduate students only.

Concurrent with PHYSICS 147B.

PHYSICS 233C. Techniques in Medical Imaging II: Ultrasound, Electrophysiological, Optical. 4 Units.
Sound and ultrasound, ultrasonic imaging, physiological electromagnetism, EEG, MEG, ECG, MCG, optical properties of tissues, fluorescence and bioluminescence, MR impedance imaging, MR spectroscopy, electron spin resonance and ESR imaging.

Prerequisite: EECS 202B.

Same as EECS 202C.

Restriction: Graduate students only.

Concurrent with PHYSICS 147C.
PHYSICS 234A. Elementary Particle Physics. 4 Units.
Overview of Standard Model theory and phenomenology. Electromagnetic, strong and weak forces, quark model, interactions with matter, particle detectors and accelerators.
Prerequisite: PHYSICS 215B.

PHYSICS 234B. Advanced Elementary Particle Physics. 4 Units.
SU(3)xSU(2)xU(1) model of strong, weak, and electromagnetic interactions. K-meson system and CP violation, neutrino masses and mixing, grand-unified theories, supersymmetry, introduction to cosmology and its connection to particle physics.
Prerequisite: PHYSICS 234A and PHYSICS 235A.

PHYSICS 234C. Advanced Elementary Particle Physics. 4 Units.
SU(3)xSU(2)xU(1) model of strong, weak, and electromagnetic interactions. K-meson system and CP violation, neutrino masses and mixing, grand-unified theories, supersymmetry, introduction to cosmology and its connection to particle physics.
Prerequisite: PHYSICS 234A and PHYSICS 235A.

PHYSICS 235A. Quantum Field Theory. 4 Units.
Canonical quantization, scalar field theory, Feynman diagrams, tree-level quantum electrodynamics.
Prerequisite: PHYSICS 215B.
Restriction: Graduate students only.

PHYSICS 235B. Advanced Quantum Field Theory. 4 Units.
Pathintegral techniques, loop diagrams, regularization and renormalization, anomalies.
Prerequisite: PHYSICS 235A.
Restriction: Graduate students only.

PHYSICS 238A. Condensed Matter Physics. 4 Units.
Bonding in solids; crystal symmetry and group theory, elastic properties of crystals; lattice vibrations, interaction of radiation with matter; cohesion of solids; the electron gas; electron energy bands in solids; ferromagnetism; transport theory; semiconductors and superconductors; many-body perturbation theory.
Prerequisite: PHYSICS 133 and (PHYSICS 214A or CHEM 232A) and (PHYSICS 215B or CHEM 231B).

PHYSICS 238B. Condensed Matter Physics. 4 Units.
Bonding in solids; crystal symmetry and group theory, elastic properties of crystals; lattice vibrations, interaction of radiation with matter; cohesion of solids; the electron gas; electron energy bands in solids; ferromagnetism; transport theory; semiconductors and superconductors; many-body perturbation theory.
Prerequisite: PHYSICS 238A.

PHYSICS 238C. Condensed Matter Physics. 4 Units.
Bonding in solids; crystal symmetry and group theory, elastic properties of crystals; lattice vibrations, interaction of radiation with matter; cohesion of solids; the electron gas; electron energy bands in solids; ferromagnetism; transport theory; semiconductors and superconductors; many-body perturbation theory.
Prerequisite: PHYSICS 238B.

PHYSICS 239A. Plasma Physics. 4 Units.
Basic concepts, orbits, kinetic and fluid equations, Coulomb collisions, fluctuations, scattering, radiation.
Restriction: Graduate students only.

PHYSICS 239B. Plasma Physics. 4 Units.
Magnetic confinement, MHD equilibrium and stability, collisional transport.
Prerequisite: PHYSICS 239A.
Restriction: Graduate students only.
PHYSICS 239C. Plasma Physics. 4 Units.
Linear waves and instabilities, uniform un-magnetized and magnetized plasmas, non-uniform plasmas.
Prerequisite: PHYSICS 239B.
Restriction: Graduate students only.

PHYSICS 239D. Plasma Physics. 4 Units.
Nonlinear plasma physics, quasilinear theory, large-amplitude coherent waves, resonance broadening, strong turbulence.
Prerequisite: PHYSICS 239C.
Restriction: Graduate students only.

PHYSICS 240A. Galactic Astrophysics. 4 Units.
The morphology, kinematics, and evolution of our Milky Way and other galaxies. Topics include stellar formation and stellar evolution, end states of stars (supernovae, neutron stars), the distribution of stars, interstellar gas and mass in galaxies. The Local Group.

PHYSICS 240B. Cosmology. 4 Units.
An introduction to modern cosmology set within the context of general relativity. Topics include the expansion history of the Universe, inflation, the cosmic microwave background, density fluctuations, structure formation, dark matter, dark energy, and gravitational lensing.

PHYSICS 240C. Radiative Processes in Astrophysics. 4 Units.
Exploration of radiation mechanisms (electron scattering, synchrotron emission, collisional excitation, and more) and radiative transfer through matter including absorption and emission. Includes such observational astrophysics topics as spectroscopic study of atoms and nuclei, X-rays, and cosmic rays.

PHYSICS 241B. Stellar Astrophysics. 4 Units.
Prerequisite: PHYSICS 211 and PHYSICS 240A.

PHYSICS 241C. Extragalactic Astrophysics. 4 Units.
The physics and phenomenology of galaxies; star formation, interstellar medium, and intergalactic medium. Galaxy structure and dynamics. Galaxy evolution, stellar populations, and scaling relations; the relationship between galaxy properties and environment. Galaxy clusters and active galactic nuclei.
Prerequisite: PHYSICS 211 and PHYSICS 240A.

PHYSICS 241D. Early Universe Physics. 4 Units.
Includes a thorough quantum treatment of the generation of perturbations during inflation and various topics related to kinetic theory in an expanding Universe. Other topics include the astrophysics and cosmology of weakly interacting particles.
Prerequisite: PHYSICS 234A and (PHYSICS 240B or PHYSICS 255).

PHYSICS 246. Special Topics in Astrophysics. 4 Units.
Outlines and emphasizes a subarea of astrophysics that is undergoing rapid development.
Repeatability: May be repeated for credit unlimited times.
Restriction: Graduate students only.

PHYSICS 247. Special Topics in Particle Physics. 4 Units.
Current topics in particle non-accelerator-based research fields.
Repeatability: May be repeated for credit unlimited times.
Restriction: Graduate students only.

PHYSICS 248. Special Topics in Condensed Matter Physics. 4 Units.
Outlines and emphasizes a subarea of condensed matter physics that is undergoing rapid development.
Repeatability: Unlimited as topics vary.
Restriction: Graduate students only.
PHYSICS 249. Special Topics in Plasma Physics. 4 Units.
Outlines and emphasizes a subarea of plasma physics that is undergoing rapid development.

Prerequisite: PHYSICS 239A and PHYSICS 239B.

Grading Option: Satisfactory/unsatisfactory only.

Repeatability: May be repeated for credit unlimited times.

PHYSICS 255. General Relativity. 4 Units.
An introduction to Einstein’s theory of gravitation. Tensor analysis, Einstein’s field equations, astronomical tests of Einstein’s theory, gravitational waves.

PHYSICS 260A. Seminar in Condensed Matter Physics. 1 Unit.
Seminar designed to acquaint students with recent advances in solid state physics. Lecturers from the Department of Physics and Astronomy (both faculty and graduate students), other UCI departments, and other institutions.

Grading Option: Satisfactory/unsatisfactory only.

Repeatability: May be repeated for credit unlimited times.

Restriction: Graduate students only.

PHYSICS 260B. Seminar in Condensed Matter Physics. 1 Unit.
Seminar designed to acquaint students with recent advances in solid state physics. Lecturers from the Department of Physics and Astronomy (both faculty and graduate students), other UCI departments, and other institutions.

Grading Option: Satisfactory/unsatisfactory only.

Repeatability: May be repeated for credit unlimited times.

Restriction: Graduate students only.

PHYSICS 260C. Seminar in Condensed Matter Physics. 1 Unit.
Seminar designed to acquaint students with recent advances in solid state physics. Lecturers from the Department of Physics and Astronomy (both faculty and graduate students), other UCI departments, and other institutions.

Grading Option: Satisfactory/unsatisfactory only.

Repeatability: May be repeated for credit unlimited times.

Restriction: Graduate students only.

PHYSICS 261A. Seminar in Plasma Physics. 1 Unit.
Advanced topics in plasma physics: wave propagation, nonlinear effects, kinetic theory and turbulence, stability problems, transport coefficients, containment, and diagnostics. Applications to controlled fusion and astrophysics.

Grading Option: Satisfactory/unsatisfactory only.

Restriction: Graduate students only.

PHYSICS 261B. Seminar in Plasma Physics. 1 Unit.
Advanced topics in plasma physics: wave propagation, nonlinear effects, kinetic theory and turbulence, stability problems, transport coefficients, containment, and diagnostics. Applications to controlled fusion and astrophysics.

Grading Option: Satisfactory/unsatisfactory only.

Restriction: Graduate students only.

PHYSICS 261C. Seminar in Plasma Physics. 1 Unit.
Advanced topics in plasma physics: wave propagation, nonlinear effects, kinetic theory and turbulence, stability problems, transport coefficients, containment, and diagnostics. Applications to controlled fusion and astrophysics.

Grading Option: Satisfactory/unsatisfactory only.

Restriction: Graduate students only.
PHYSICS 263A. Seminar in Particle Physics. 1 Unit.
Discussion of advanced topics and reports of current research results in theoretical and experimental particle physics and cosmic rays.
Grading Option: Satisfactory/unsatisfactory only.
Repeatability: May be repeated for credit unlimited times.
Restriction: Graduate students only.

PHYSICS 263B. Seminar in Particle Physics. 1 Unit.
Discussion of advanced topics and reports of current research results in theoretical and experimental particle physics and cosmic rays.
Grading Option: Satisfactory/unsatisfactory only.
Repeatability: May be repeated for credit unlimited times.
Restriction: Graduate student only.

PHYSICS 263C. Seminar in Particle Physics. 1 Unit.
Discussion of advanced topics and reports of current research results in theoretical and experimental particle physics and cosmic rays.
Grading Option: Satisfactory/unsatisfactory only.
Repeatability: May be repeated for credit unlimited times.
Restriction: Graduate students only.

PHYSICS 265A. Seminar in Astrophysics. 1 Unit.
Acquaints students with current research in astrophysics. Lecturers from the Department of Physics and Astronomy and from other institutions.
Grading Option: Satisfactory/unsatisfactory only.
Repeatability: May be repeated for credit unlimited times.
Restriction: Graduate students only.

PHYSICS 265B. Seminar in Astrophysics. 1 Unit.
Acquaints students with current research in astrophysics. Lecturers from the Department of Physics and Astronomy and from other institutions.
Grading Option: Satisfactory/unsatisfactory only.
Repeatability: May be repeated for credit unlimited times.
Restriction: Graduate students only.

PHYSICS 265C. Seminar in Astrophysics. 1 Unit.
Acquaints students with current research in astrophysics. Lecturers from the Department of Physics and Astronomy and from other institutions.
Grading Option: Satisfactory/unsatisfactory only.
Repeatability: May be repeated for credit unlimited times.
Restriction: Graduate students only.

PHYSICS 266. Current Topics in Chemical and Materials Physics. 1 Unit.
The subjects covered vary from year to year. Connection between fundamental principles and implementations in practice in science, industry, and technology.
Repeatability: May be repeated for credit unlimited times.
Same as CHEM 266.

PHYSICS 267A. Current Problems in Particle Physics. 4 Units.
Presentation and discussion of current research and theory in particle physics. Lectures given by staff and students.
Repeatability: May be repeated for credit unlimited times.
PHYSICS 267B. Current Problems in Particle Physics. 4 Units.
Presentation and discussion of current research and theory in particle physics. Lectures given by staff and students.

Repeatability: May be repeated for credit unlimited times.

PHYSICS 267C. Current Problems in Particle Physics. 4 Units.
Presentation and discussion of current research and theory in particle physics. Lectures given by staff and students.

Repeatability: May be repeated for credit unlimited times.

PHYSICS 269. Seminar in Teaching Physics. 2 Units.
Techniques for effective teaching. Covers active listening and student engagement, problem-solving skills, peer instruction and collaborative learning, and evaluation. Required of all new Teaching Assistants.

Grading Option: Satisfactory/unsatisfactory only.

PHYSICS 273. Technical Communication Skills. 2 Units.
Development of effective communication skills, oral and written presentations, through examples and practice.

Grading Option: Satisfactory/unsatisfactory only.

Same as CHEM 273.

PHYSICS 291. Research Seminar. 1-4 Units.
Detailed discussion of research problems of current interest in the Department. Format, content, and frequency of the course are variable.

Repeatability: May be repeated for credit unlimited times.

Restriction: Graduate students only.

PHYSICS 295. Experimental Research. 4-12 Units.
With the approval of a faculty member, a student may pursue a research program in experimental physics. Typical areas include astrophysics, condensed matter physics, elementary particle physics, and plasma physics.

Grading Option: Satisfactory/unsatisfactory only.

Repeatability: May be repeated for credit unlimited times.

Restriction: School of Physical Sciences majors only. Graduate students only.

PHYSICS 296. Theoretical Research. 4-12 Units.
With approval of a faculty member, a student may pursue a research program in theoretical physics. Typical areas include astrophysics, condensed matter physics, elementary particle physics, and plasma physics.

Grading Option: Satisfactory/unsatisfactory only.

Repeatability: May be repeated for credit unlimited times.

Restriction: School of Physical Sciences majors only. Graduate students only.

PHYSICS 298. Physics Colloquium. 1 Unit.
Seminar held each week, in which a current research topic is explored. Frequently, off-campus researchers are invited to present the seminar, and on occasion a faculty member or researcher from the Department will speak.

Grading Option: Satisfactory/unsatisfactory only.

Repeatability: May be repeated for credit unlimited times.

Restriction: School of Physical Sciences majors only.

PHYSICS 299. Reading of Special Topic. 4-12 Units.
With special consent from a faculty member who will agree to supervise the program, a student may receive course credit for individual study of some area of physics.

Restriction: Graduate students only.
PHYSICS 395. Laboratory Teaching. 1 Unit.
Required of and limited to teaching assistants of undergraduate laboratory courses. Designed to teach the necessary skills required of teaching assistants for these courses.

Grading Option: Satisfactory/unsatisfactory only.

Repeatability: May be repeated for credit unlimited times.

PHYSICS 399. University Teaching. 1-4 Units.
Required of and limited to Teaching Assistants.

Grading Option: Satisfactory/unsatisfactory only.

Repeatability: May be repeated for credit unlimited times.