The Henry Samueli School of Engineering

Gregory Washington, Dean
5200 Engineering Hall
Undergraduate Counseling: 949-824-4334
Graduate Counseling: 949-824-8090
http://www.eng.uci.edu/

Overview

The academic mission of The Henry Samueli School of Engineering has been developed to be consistent with the missions and goals set for it by the State of California, the University of California, and the University of California, Irvine (UCI) campus. Specifically, the academic mission of the School is to educate students, at all levels, to be the best engineers and leaders in the nation and world by engaging them in a stimulating community dedicated to the discovery of knowledge, creation of new technologies, and service to society.

The individual engineering and related programs have published program objectives that are consistent with the missions and goals of the University of California, UCI, and The Henry Samueli School of Engineering.

The School offers undergraduate majors in Aerospace Engineering (AE), Biomedical Engineering (BME), Biomedical Engineering: Premedical (BMEP), Chemical Engineering (ChE), Civil Engineering (CE), Computer Engineering (CpE), Computer Science and Engineering (CSE, a jointly administered program with the Donald Bren School of Information and Computer Sciences), Electrical Engineering (EE), Engineering (a general program, GE), Environmental Engineering (EnE), Materials Science Engineering (MSE), and Mechanical Engineering (ME). The undergraduate majors in Aerospace, Biomedical, Chemical, Civil, Computer, Computer Science and Engineering, Electrical, Environmental, Materials Science, and Mechanical Engineering are accredited by the Engineering Accreditation Commission of ABET (http://www.abet.org), http://www.abet.org; Computer Science and Engineering (CSE) is also accredited by the Computing Accreditation Commission of ABET (http://www.abet.org), http://www.abet.org. The undergraduate major in Biomedical Engineering: Premedical (BMEP) is not designed to be accredited, therefore is not accredited by ABET.

Aerospace Engineering considers the flight characteristics, performance, and design of aircraft and spacecraft. An upper-division series of courses in aerodynamics, propulsion, structures, and control follows a common core with Mechanical Engineering. The skills acquired in those courses are integrated in the capstone aerospace design course. The intent of the program is to produce highly proficient engineers who can tackle the aerospace engineering challenges of the future.

Biomedical Engineering applies engineering principles to solve complex medical problems and focuses at improving the quality of health care by advancing technology and reducing costs. Examples include advanced biomedical imaging systems, the design of microscale diagnostic systems, drug delivery systems, and tissue engineering. Specializations are available that focus student’s technical expertise on biophotonics or biomems.

Biomedical Engineering: Premedical shares introductory engineering courses with Biomedical Engineering, but replaces senior engineering laboratories and design courses with biology and organic chemistry courses required by medical schools for admission. The intent of the program is to produce students with a basic engineering background who are qualified to enter medical school.

Chemical Engineering applies the knowledge of chemistry, mathematics, physics, biology, and humanities to solve societal problems in areas such as energy, health, the environment, food, textiles, shelter, semiconductors, and homeland security. Employment opportunities exist in various industries such as chemical, petroleum, polymer, pharmaceutical, food, textile, fuel, consumer products, and semiconductor, as well as in local, state, and federal governments.

Civil Engineering addresses the challenges of large-scale engineering projects of importance to society as a whole, such as water distribution, transportation, and building design. Specializations are provided in General Civil Engineering, Environmental Hydrology and Water Resources, Structural Engineering, and Transportation Systems Engineering.

Computer Engineering addresses the design and analysis of digital computers, including both software and hardware. Computer design includes topics such as computer architecture, VLSI circuits, data base, software engineering, design automation, system software, and data structures and algorithms. Courses include programming in high-level languages such as Python, Java, C, C++; use of software packages for analysis and design; design of system software such as operating systems and hardware/software interfaces; application of computers in solving engineering problems, and laboratories in both hardware and software experiences.

Computer Science and Engineering is designed to provide students with the fundamentals of computer science, both hardware and software, and the application of engineering concepts, techniques, and methods to both computer systems engineering and software system design. The program gives students access to multidisciplinary problems in engineering with a focus on total systems engineering. Students learn the computer science principles that are critical to development of software, hardware, and networking of computer systems. From that background, engineering concepts and methods are added to give students exposure to circuit design, network design, and digital signal processing. Elements of engineering practice include systems view, manufacturing and economic issues, and multidisciplinary engineering applications. The program is administered jointly by the Department of Electrical Engineering and Computer Science in The Henry Samueli School of Engineering and by the Department of Computer Science in the Donald Bren School of Information and Computer Sciences.
Electrical Engineering is one of the major contributors to the modernization of our society. Many of the most basic and pervasive products and services are either based on or related to the scientific and engineering principles taught at the Department of Electrical Engineering and Computer Science. Students specialize in Electronic Circuit Design; Semiconductors and Optoelectronics; RF, Antennas and Microwaves; Digital Signal Processing; or Communications.

The major in Engineering is a special program of study for upper-division students who wish to combine the study of engineering principles with other areas such as the physical and biological sciences, social and behavioral science, humanities, and arts. Students may construct their own specialization. Click on the "Undergraduate Study" tab above for information about this major.

Environmental Engineering concerns the development of strategies to control and minimize pollutant emissions, to treat waste, and to remediate polluted natural systems. Emphasis areas include air quality and combustion, water quality, and water resources engineering.

Materials Science Engineering is concerned with the generation and application of knowledge relating the composition, structure, and synthesis of materials to their properties and applications. During the past two decades, Materials Science Engineering has become an indispensable component of modern engineering education, partly because of the crucial role materials play in national defense, the quality of life, and the economic security and competitiveness of the nation; and partly because the selection of materials has increasingly become an integral part of almost every modern engineering design. Emphasis in the Materials Science Engineering curriculum is placed on the synthesis, characterization, and properties of advanced functional materials; analysis, selection, and design related to the use of materials; the application of computers to materials problems; and the presence of an interdisciplinary theme that allows a qualified student to combine any engineering major with the Materials Science Engineering major.

Mechanical Engineering considers the design, control, and motive power of fluid, thermal, and mechanical systems ranging from microelectronics to spacecraft to the human body. Specializations allow students to focus their technical electives in the areas of Aerospace Engineering, Energy Systems and Environmental Engineering, Flow Physics and Propulsion Systems, and Design of Mechanical Systems.

The School offers M.S. and Ph.D. degrees in Biomedical Engineering; Chemical and Biochemical Engineering; Civil Engineering; Electrical and Computer Engineering, with concentrations in Computer Engineering and Electrical Engineering; Engineering, with concentrations in Environmental Engineering, and Materials and Manufacturing Technology; Materials Science and Engineering; and Mechanical and Aerospace Engineering. Specialized research opportunities are available within each of these programs. In Biomedical Engineering, areas of research include micro/nanoscale biomedical devices for diagnostics and therapeutics, biophotonics, systems/synthetic bioengineering, tissue/organ engineering, cardiovascular engineering, cancer biotechnology, and neuroengineering. Bioreaction and bioreactor engineering, recombinant cell technology, and bioseparation processes are research areas in Biochemical Engineering. In Civil Engineering, research opportunities are provided in structural/earthquake engineering, reliability engineering, transportation systems engineering, environmental engineering, and water resources. Research opportunities in Electrical and Computer Engineering are available in the areas of parallel and distributed computer systems, VLSI design, computer architecture, image and signal processing, communications, control systems, and optical and solid-state devices. Research in combustion and propulsion sciences, laser diagnostics, supersonic flow, direct numerical simulation, computer-aided design, robotics, control theory, parameter identification, material processing, electron microscopy, and ceramic engineering are all available in Mechanical and Aerospace Engineering. The School also offers the M.S. degree in Engineering Management, a joint degree program with the Paul Merage School of Business; and the M.S. degree in Biotechnology Management, a joint degree program with the Francisco J. Ayala School of Biological Sciences and The Paul Merage School of Business.

Additional publications describing undergraduate and graduate academic study and research opportunities are available through The Henry Samueli School of Engineering, and the Departments of Biomedical Engineering, Chemical Engineering and Materials Science, Civil and Environmental Engineering, Electrical Engineering and Computer Science, and Mechanical and Aerospace Engineering.

Degrees

<table>
<thead>
<tr>
<th>Program</th>
<th>Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerospace Engineering</td>
<td>B.S.</td>
</tr>
<tr>
<td>Biomedical Engineering</td>
<td>B.S., M.S., Ph.D.</td>
</tr>
<tr>
<td>Biomedical Engineering: Premedical</td>
<td>B.S.</td>
</tr>
<tr>
<td>Biotechnology Management</td>
<td>M.S.</td>
</tr>
<tr>
<td>Chemical and Biochemical Engineering</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>B.S.</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>B.S., M.S., Ph.D.</td>
</tr>
<tr>
<td>Computer Science and Engineering</td>
<td>B.S.</td>
</tr>
<tr>
<td>Computer Engineering</td>
<td>B.S.</td>
</tr>
<tr>
<td>Electrical and Computer Engineering</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>B.S.</td>
</tr>
<tr>
<td>Engineering</td>
<td>B.S., M.S., Ph.D.</td>
</tr>
<tr>
<td>Engineering Management</td>
<td>M.S.</td>
</tr>
<tr>
<td>Environmental Engineering</td>
<td>B.S.</td>
</tr>
<tr>
<td>Materials Science and Engineering</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Materials Science Engineering</td>
<td>B.S.</td>
</tr>
</tbody>
</table>
Mechanical and Aerospace Engineering
Mechanical Engineering
Networked Systems

1. Offered jointly with Francisco J. Ayala School of Biological Sciences and The Paul Merage School of Business. See Francisco J. Ayala School of Biological Sciences section of the Catalogue for information.

2. Offered jointly with the Donald Bren School of Information and Computer Sciences. See the Interdisciplinary Studies section of the Catalogue for information.

3. Offered jointly with The Paul Merage School of Business.

Requirements for the Bachelor’s Degree

All students in The Henry Samueli School of Engineering must fulfill the following requirements.

All students must meet the University Requirements.

All students must meet the School Requirements:

The following are minimum subject-matter requirements for graduation:

Mathematics and Basic Science Courses: Students must complete a minimum of 48 units of college-level mathematics and basic sciences.

Engineering Topics Courses: Students must complete a minimum of 72 units of engineering topics. Engineering topics are defined as courses with applied content relevant to the field of engineering.

Design Units: All undergraduate Engineering courses indicate both a total and a design unit value. Design unit values are listed at the end of the course description. Each student is responsible for the inclusion of courses whose design units total that required by the program of study.

The Academic Plan and Advising Requirements to remain affiliated with The Henry Samueli School of Engineering: All students enrolled in The Henry Samueli School of Engineering are required to meet annually with their designated faculty for advising and mentoring and to have an academic plan on file with the Student Affairs Office which has been approved by their academic counselor. Students who do not have a plan on file, or deviate from this plan without approval from an academic counselor will be subject to probation. Students on probation for two consecutive quarters who do not have a plan on file, or deviate from this plan without approval from an academic counselor will be subject to disqualification. Students who fail to meet with a faculty advisor each year will be subject to disqualification.

Duplication of Subject Material: Students who take courses which involve considerable duplication of subject material may not receive full graduation credit for all units thus completed.

Residence Requirement: In addition to the University residence requirement, at least 36 upper-division engineering units specified by each major must be completed successfully at the University of California.

Variations: Variations from the general School degree requirements may be made subject to the approval of the faculty of the School. Students wishing to obtain variances should submit petitions to the School’s Student Affairs Office.

Undergraduate Study

John LaRue, Associate Dean for Undergraduate Student Affairs
Student Affairs Office
305 Rockwell Engineering Center
949-824-4334

- Admissions
- General Undergraduate Major in Engineering

Planning a Program of Study

Advising

Academic advising is available from academic counselors and peer advisors in the School’s Student Affairs Office, 305 Rockwell Engineering Center, and from faculty advisors. Students must realize, however, that ultimately they alone are responsible for the planning of their own program and for satisfactory completion of the graduation requirements. Students are encouraged to consult with the academic counselors in the Engineering Student Affairs Office whenever they desire to change their program of study. All Engineering majors are required to meet with their faculty advisor at least once each year.
Some engineering students will need more than four years to obtain their B.S., particularly if part-time employment or extracurricular activities make heavy demands on their time. Normally, such students can stay on track, and are encouraged to do so, by enrolling in summer sessions at UCI or at other institutions when a petition has been approved in advance.

High-achieving students may declare a second major. Early consultation with the School is advisable.

Required courses may be replaced by other courses of equivalent content if the student substantiates the merits of the courses in the program of study and obtains prior approval from faculty in the School.

Students should be aware that most Engineering courses require the completion of prerequisites. The sample programs shown in each departmental description constitute preferred sequences which take into account all prerequisites.

School policy does not permit the deletion of Engineering courses after the second week or addition of Engineering courses after the second week of the quarter without the Associate Dean’s approval.

Undergraduate students who have high academic standing, who have completed the necessary prerequisites, and who have obtained permission from the School may qualify to take certain graduate-level courses.

Students are required to complete UCI’s lower-division writing requirement (see the Requirements for a Bachelor’s Degree section) during the first two years. Thereafter, proficiency in writing and computing (using a higher-level language such as Python, C, C++, Java, or MATLAB) is expected in all Engineering courses.

The Pass/Not Pass option is available to encourage students to enroll in courses outside their major field. Pass/Not Pass option cannot be used to satisfy specific course requirements of the students school and major. Students must take courses to fulfill the UC Entry Level Writing requirement for a grade. For more complete information, see the Academic Regulations and Procedures section of this Catalogue.

Admissions

The sequential nature of the Engineering program and the fact that many courses are offered only once a year make it beneficial for students to begin their studies in the fall quarter. Applicants wishing to be admitted for the fall quarter, 2018, must have submitted their completed application forms during the priority filing period (August 1 - November 30, 2017).

High school students wishing to enter the UCI Engineering program must have completed four years of mathematics through pre-calculus or math analysis and are advised to have completed one year each of physics and chemistry. That preparation, along with honors courses and advanced placement courses, is fundamental to success in the Engineering program and is vital to receiving first consideration for admittance to an Engineering major during periods of restricted enrollments. Students applying for admission for fall quarter should complete their examination requirements during May or June of their junior year or during their senior year, but no later than the December test date. (Typically, this means that students will take the SAT or the ACT Plus Writing Test in October or November. Applicants are strongly encouraged to take a math or science AP or SAT exam. Applicants should favor the Math Level 2 SAT Subject Test over the Math Level 1 Test. Applicants must apply for admission to a specific Engineering major or Engineering Undeclared.

If enrollment limitations make it necessary, unaccommodated Engineering applicants may be offered alternative majors at UCI.

Transfer students may be admitted to The Henry Samueli School of Engineering either from another major at UCI or from another college or university. A student seeking admission to The Henry Samueli School of Engineering from colleges and schools other than UCI must satisfy University requirements for admission with advanced standing and should complete appropriate prerequisites for their major of choice. Applicants should prioritize completing subject requirements (math, science, engineering) over completion of IGETC or UCI general education and lower-division requirements prior to transfer. IGETC is not considered in transfer selection while subject requirements contribute directly to reducing time to graduate. Since requirements vary from major to major, those contemplating admission with advanced standing to the School should consult each Department’s Catalogue section and the UCI Office of Admissions and Relations with Schools, 949-824-6703, for the specific requirements of each program. All transfer students should arrange for early consultation with The Henry Samueli School of Engineering Student Affairs Office at 949-824-4334.

Change of Major: Students who wish to change their major to one offered by the School should contact the Engineering Student Affairs Office for information about change-of-major requirements, procedures, and policies. Information is also available at the UCI Change of Major Criteria website (http://www.changeofmajor.uci.edu).

Proficiency Examinations

A student may take a course by examination with the approval of the faculty member in charge of the course and the Dean of the School. Normally, ability will be demonstrated by a written or oral examination; if a portion of the capability involves laboratory exercises, the student may be required to perform experiments as well. The proficiency examination is not available for any course a student has completed at UCI.

Concentration: Engineering and Computer Science in the Global Context

The globalization of the marketplace for information technology services and products makes it likely that The Henry Samueli School of Engineering graduates will work in multicultural settings or be employed by companies with extensive international operations, or customer bases. The goal of the
concentration is to help students develop and integrate knowledge of the history, language, and culture of a country or geographic region outside the United States, through course work both at UCI and an international host campus, followed by a technology-related internship in the host country.

All of The Henry Samueli School of Engineering majors in good standing may propose an academic plan that demonstrates the ability to complete the concentration (a minimum of eight courses) and other requirements for graduation in a reasonable time frame. It is expected that a student’s proposal will reflect a high degree of planning that includes the guidance of academic counselors and those at the UCI Study Abroad Center regarding course selection, as well as considerations related to internship opportunities, housing, and financial aid. Each student’s proposed program of study must be approved by the Associate Dean for Student Affairs in The Henry Samueli School of Engineering. The Associate Dean will be available to assist qualified students with the development of a satisfactory academic plan, as needed.

The concentration consists of the following components:

1. A minimum of eight courses at UCI or at the international campus with an emphasis on the culture, language (if applicable and necessary), history, literature of the country that corresponds to the international portion of the program, international law, international labor policy, global issues, global institutions, global conflict and negotiation, and global economics;
2. A one- or two-semester sequence of technical courses related to the major and, possibly, culture, history, and literature courses taken at an international university;
3. A two-month or longer technical internship experience in the same country as the international educational experience.

More information about the requirements for the concentration is available in The Henry Samueli School of Engineering Student Affairs Office.

The concentration in Engineering and Computer Science in the Global Context is open to students in Aerospace Engineering, Biomedical Engineering, Biomedical Engineering: Premedical, Chemical Engineering, Civil Engineering, Computer Engineering, Engineering (General), Electrical Engineering, Environmental Engineering, Materials Science Engineering, and Mechanical Engineering.

Engineering Gateway Freshman-Year Curriculum

Students who know that they want to major in engineering but who are unsure of the specific major should apply for the Engineering Gateway Curriculum and follow the Sample Engineering Gateway Curriculum. Students following the Engineering Gateway Curriculum are required to meet with an academic advisor every quarter and are strongly encouraged to declare a major as soon as possible and then follow the appropriate sample program of study for that major.

Sample Engineering Gateway Curriculum - Freshman

<table>
<thead>
<tr>
<th>Freshman</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 2A</td>
<td>MATH 2B</td>
<td>MATH 2D</td>
</tr>
<tr>
<td>ENGR 7A</td>
<td>ENGR 7B</td>
<td>PHYSICS 7D</td>
</tr>
<tr>
<td>ENGR 1A</td>
<td>CHEM 1B</td>
<td>PHYSICS 7LD</td>
</tr>
<tr>
<td>or</td>
<td>PHYSICS 7C</td>
<td>Select one of the following:</td>
</tr>
<tr>
<td>CHEM 1A</td>
<td>PHYSICS 7LC</td>
<td>CHEM 1C and CHEM 1LC</td>
</tr>
</tbody>
</table>

Select one of the following:
EECS 10
EECS 12
ENGRMAE 10
CSE 42

1 Students who choose to major in Biomedical Engineering or Biomedical Engineering: Premedical should enroll in BME 1 in the fall quarter of the sophomore year. Students who choose to major in Computer Engineering should enroll in EECS 20 by the spring or summer quarter preceding their sophomore year.

2 Students who are considering the Computer Science and Engineering major should enroll in CSE 42.

Students who choose certain majors during the first year may replace Chemistry courses with required major courses.

Students should choose a major by the end of the spring quarter of their freshman year or earlier. Some modification in the program of study might be appropriate if the student chooses a major before the end of the freshman year. In any case, when the major is chosen, the student must meet immediately with an academic counselor to plan the program of study.

Undergraduate Programs

Specific information about courses fulfilling School and major requirements can be found in the department sections. Note that some majors require more units than the School requirements.

Aerospace Engineering
Biomedical Engineering
Biomedical Engineering: Premedical
Chemical Engineering
Civil Engineering
Computer Engineering
Computer Science and Engineering
Electrical Engineering
Engineering
Environmental Engineering
Materials Science Engineering
Mechanical Engineering

Minors of Interest to Engineers

Minor in Earth and Atmospheric Sciences
The minor in Earth and Atmospheric Sciences focuses on the application of physical, chemical, and biological principles to understanding the complex interactions of the atmosphere, ocean, and land through climate and biogeochemical cycles. See the Department of Earth System Science in the School of Physical Sciences section of this Catalogue for more information.

Minor in Global Sustainability
The interdisciplinary minor in Global Sustainability trains students to understand the changes that need to be made in order for the human population to live in a sustainable relationship with the resources available on this planet. See the Interdisciplinary Studies section of this Catalogue for more information.

Career Advising
The UCI Career Center provides services to students and alumni including career counseling, information about job opportunities, a career library, and workshops on resume preparation, job search, and interview techniques. See the Career Center section for additional information. In addition, special career planning events are held throughout the year including an annual Career Fair. Individual career counseling is available, and students have access to the Career Library which contains information on graduate and professional schools in engineering, as well as general career information.

Honors
Graduation with Honors. Undergraduate honors at graduation in The Henry Samueli School of Engineering are computed by using 50 percent of the overall UCI GPA and 50 percent of the upper-division Engineering GPA. (Engineering E190 is not used in the calculation of the upper-division GPA.) A general criterion is that students must have completed at least 72 units in residence at a University of California campus. Approximately 2 percent of the graduating class shall be awarded summa cum laude, 4 percent magna cum laude, and 10 percent cum laude, with no more than 16 percent being awarded honors. Other important factors are considered visit at Honors Recognition.

Dean’s Honor List. The quarterly Dean’s Honor List is composed of students who have received a 3.5 GPA while carrying a minimum of 12 graded units.

Gregory Bogaczyk Memorial Scholarship. This scholarship was established in memory of Gregory Bogaczyk, a former UCI Mechanical Engineering student, and is contributed by the Bogaczyk family and friends. An award is given each year to a junior or senior Mechanical Engineering student.

Haggai Memorial Endowed Scholarship. This memorial fund was established in honor of Ted Haggai, an electrical engineer. This scholarship is awarded to an outstanding senior electrical engineering student and member of Tau Beta Pi. Primary consideration will be given to members of Tau Beta Pi who have contributed outstanding service to both UCI and The Henry Samueli School of Engineering.

Christine Jones Memorial Scholarship. This scholarship was established in memory of Christine Jones, an Electrical Engineering graduate, Class of 1989. The primary focus of this scholarship is to provide financial support to a female undergraduate student in The Henry Samueli School of Engineering.

Deborah and Peter Pardoen Memorial Scholarship. This scholarship is awarded each year to a graduating senior in Mechanical Engineering or in Aerospace Engineering. The scholarship is based on outstanding service to The Henry Samueli School of Engineering and the community.

Henry Samueli Endowed Scholarship. This premier scholarship, established by Henry Samueli, is awarded to outstanding freshmen and transfer students in The Henry Samueli School of Engineering. Recipients are chosen by the School based on their academic excellence. The award is renewable up to four years for freshmen and up to two years for transfer students.

Additional awards in other categories are made throughout the academic year.

Office of Access and Inclusion
200A Rockwell Engineering Center; 949-824-7134
Sharnnia Artis, Assistant Dean for Access and Inclusion

The Office of Access and Inclusion (OAI) facilitates and supports the recruitment, retention, and graduation of undergraduate and graduate students from historically excluded populations who are currently underrepresented in the Samueli School of Engineering and the Donald Bren School of
Information and Computer Sciences. Services include mentoring, tutoring, career and academic workshops and coaching, and assistance for students looking to conduct undergraduate research or prepare for graduate school.

Special Programs and Courses

Campuswide Honors Program

The Campuswide Honors Program is available to selected high-achieving students from all academic majors from their freshman through senior years. For more information contact the Campuswide Honors Program, 1200 Student Services II; 949-824-5461; honors@uci.edu; or visit the Campuswide Honors Program website (http://www.honors.uci.edu).

Engineering 199

Every undergraduate student in The Henry Samueli School of Engineering has the opportunity to pursue independent research under the direct supervision of a professor in the School. Interested students should consult with a faculty member to discuss the proposed research project. If the project is agreed upon, the student must fill out a 199 Proposal Form and submit it to the Engineering Student Affairs Office.

Undergraduate Research Opportunities Program

The Undergraduate Research Opportunities Program (UROP) encourages and facilitates research and creative activities by undergraduates. Research opportunities are available not only from every discipline, interdisciplinary program, and school, but also from many outside agencies, including national laboratories, industrial partners, and other universities. UROP offers assistance to students and faculty through all phases of the research activity: proposal writing, developing research plans, resource support, conducting the research and analyzing data, and presenting results of the research at the annual spring UCI Undergraduate Research Symposium. Calls for proposals are issued in the fall and spring quarters. Projects supported by UROP may be done at any time during the academic year and/or summer, and the research performed must meet established academic standards and emphasize interaction between the student and the faculty supervisor. In addition, all students participating in faculty-guided research activities are welcome to submit their research papers for faculty review and possible publication in the annual UCI Undergraduate Research Journal. For more information, contact the UROP Office, 1100 Student Services II; 949-824-4189; urop@uci.edu; or visit the Undergraduate Research Opportunities Program website (http://www.urop.uci.edu).

Accelerated M.S. or Ph.D. Status Program in The Henry Samueli School of Engineering

Exceptionally promising UCI undergraduate Engineering students may, during their junior or senior year, petition for streamlined admissions into a graduate program within The Henry Samueli School of Engineering. Accelerated M.S. Status would allow a student to petition for exemption from UCI’s Graduate Record Examination (GRE) requirement for graduate school admission. (The exemption applies only to current UCI students applying for admission to one of the M.S. programs in The Henry Samueli School of Engineering; other graduate schools may still require the GRE.) A current UCI undergraduate student whose ultimate goal is a Ph.D. may apply for Accelerated Status, however, a GRE score must be submitted.

Accelerated Status applicants would in all other ways be evaluated in the same manner as other applicants to the School’s graduate programs. Occasionally, a candidate for Accelerated Status may be required by the faculty to submit GRE scores in support of the graduate application.

Students who successfully petition for Accelerated Status, upon matriculation to the graduate degree program, may petition to credit toward the M.S. degree up to 18 units (with a grade of B or better) of graduate-level course work completed in excess of requirements for the UCI bachelor’s degree.

Visit the UCI Undergraduate Accelerated Status website (https://www.eng.uci.edu/admissions/graduate/accelerated-status-program) for more detailed information about this program and its eligibility requirements.

UC Education Abroad Program

Engineering students may participate in a number of programs which offer unique opportunities for education and training abroad. The University’s Education Abroad Program (UCEAP) offers engineering course work for UCI academic credit at a number of universities. Some of the UCEAP-affiliated engineering schools require proficiency in the host country’s language, while others are English speaking. Study abroad may postpone the student’s graduation for one or two quarters, depending primarily on the student’s language preparation (which can begin in the freshman year), but the added experience can add to the student’s maturity and professional competence. UCEAP students pay regular UCI fees and tuition and keep any scholarships they may have. Visit the Study Abroad Center website (http://www.studyabroad.uci.edu) for additional information.

Student Participation and Organizations

Faculty and committee meetings (except those involving personnel considerations) are open meetings; in addition to designated student representatives, all students are encouraged and expected to participate in the development of School policy. Student evaluation of the quality of instruction for each course is requested each quarter.

Engineering students may join any of a number of student organizations. Most of these organizations are professionally oriented and in many instances are local chapters of national engineering societies. A primary function of these groups is to provide regular technical and social meetings for students with common interests. Most of the groups also participate in the annual Engineering Week activities and in other School functions.

Associated General Contractors (AGC). A student chapter of the national organization, AGC at UCI is an academic engineering club for students interested in the construction field.
American Indian Science & Engineering Society (AISES). The mission of AISES is to increase the representation of American Indians in engineering, science, and technology. Chapters emphasize education as a tool that will facilitate personal and professional growth opportunities through mentor programs, leadership training, scholarships, conferences, and summer job opportunities.

American Institute of Aeronautics and Astronautics (AIAA). The AIAA is a technical society of 40,000 professional and student members devoted to science and engineering in the field of aerospace. The local chapter’s primary activities include seminars, tours of industries, and mentoring for students by professional members.

American Institute of Chemical Engineers (AIChE). AIChE, a student chapter of the national organization, provides Chemical Engineering majors with the opportunity to interact with faculty and professionals in the field.

American Society for Civil Engineers (ASCE). One of the larger engineering clubs, ASCE at UCI is a student chapter of the national organization. The ASCE focuses its efforts on interactions with professional engineers, sponsorship of Engineering Week activities, and participation in the annual ASCE Southwest Conference.

American Society for Materials (ASM). The student chapter of ASM at UCI provides the opportunity for Materials Science Engineering (MSE) students to meet engineers and scientists from local industry, attend seminars organized by the Orange Coast Chapter of ASM International, and organize discussion sessions that focus on progress and advances in the MSE field and that promote interactions between MSE students and materials faculty.

American Society of Mechanical Engineers (ASME). The student chapter of ASME at UCI provides the opportunity for Mechanical Engineering majors to meet with professors, organize social events, and participate in events and competitions supported by the ASME national organization.

Biomedical Engineering Society (BMES). The student chapter of BMES at UCI is an academic club for students in the field of Biomedical Engineering.

Chi Epsilon. This organization is a national engineering honor society which is dedicated to the purpose of promoting and maintaining the status of civil engineering as an ideal profession. Chi Epsilon was organized to recognize the characteristics of the individual that are fundamental to the successful pursuit of an engineering career.

Electric Vehicle Association/UCI (EVA/UCI). EVA/UCI gives students an opportunity for hands-on work on electric car conversions coupled with design experience.

Engineering Student Council (ESC). The ESC is the umbrella organization that provides a voice for all Engineering student chapters. A significant activity of the Council is organizing UCI’s annual Engineering Week celebration.

Engineers Without Borders (EWB). This humanitarian organization combines travel with the idea that engineers can play an instrumental role in addressing the world’s assorted challenges. Through the implementation of equitable, economical, and sustainable engineering projects, EWB-UCI works to improve quality of life within developing communities abroad.

Eta Kappa Nu. A student chapter of the National Electrical Engineering Honor Society, Eta Kappa Nu’s purpose is to promote creative interaction between electrical engineers and give them the opportunity to express themselves uniquely and innovatively to project the profession in the best possible manner.

Filipinos Unifying Student-Engineers in an Organized Network (FUSION). Fusion is the merging of diverse, distinct, or separate elements into a unified whole. The mission of FUSION is to promote the academic and professional development of student engineers by providing an organized network of support.

Institute of Electrical and Electronic Engineers (IEEE). A student chapter of a multinational organization, IEEE at UCI encompasses academic, professional, and social activities.

Institute of Transportation Engineers (ITE). ITE is a student chapter of a national group of transportation engineering professionals. Offering opportunities to meet both professionals and other students, ITE focuses its activities on an annual project with practical applications.

Mexican-American Engineers and Scientists (MAES) / Latinos in Science and Engineering. Open to all students, MAES is a student and professional organization with the purpose of aiding students in their academic, professional, and social endeavors.

National Society of Black Engineers (NSBE). The NSBE, with almost 6,000 members, is one of the largest student-managed organizations in the country. The Society is dedicated to the realization of a better tomorrow through the development of intensive programs to increase the recruitment, retention, and successful graduation of underrepresented students in engineering and other technical majors.

Omega Chi Epsilon. The student chapter of the National Chemical Engineering Honor Society aims to recognize and promote high scholarship, original investigation, and professional service in chemical engineering.

Phi Sigma Rho. This national sorority is open to women in engineering, engineering technology, and STEM majors. Its purpose is to provide social opportunities, promote academic excellence, and provide encouragement and friendship.
The Henry Samueli School of Engineering at 949-824-4334.

For further information, contact

Students are encouraged to complete as many of the lower-division degree requirements as possible prior to transfer. Students who enroll at UCI in laboratories (mechanics, electricity and magnetism), one course in computational methods (e.g., C, C++), and one year of general chemistry (with and who have satisfactorily completed the following courses: one year of approved calculus, one year of calculus-based physics with laboratories (mechanics, electricity and magnetism), one course in computational methods (e.g., C, C++), and one year of general chemistry (with laboratory).

Students are encouraged to complete as many of the lower-division degree requirements as possible prior to transfer. Students who enroll at UCI in need of completing lower-division coursework may find that it will take longer than two years to complete their degrees. For further information, contact The Henry Samueli School of Engineering at 949-824-4334.
Requirements for the B.S. in Engineering
Credit for at least 180 units, and no more than 196 units. All courses must be approved by a faculty advisor and the Associate Dean of Student Affairs prior to enrollment in the program.

All students must meet the University Requirements.
All students must meet the School Requirements.

Major Requirements
Mathematics and Basic Science Courses: MATH 2A - MATH 2B - MATH 2D, MATH 2E, MATH 3A, and MATH 3D. PHYSICS 7C, PHYSICS 7LC, PHYSICS 7D, and PHYSICS 7LD. With the approval of a faculty advisor and the Associate Dean, students select all additional Mathematics and Basic Science courses.

Engineering Topics Courses: ENGRMAE 10 or equivalent. With the approval of a faculty advisor and the Associate Dean, students select all additional Engineering Topics courses.

Design unit values are indicated at the end of each course description. The faculty advisors and the Student Affairs Office can provide necessary guidance for satisfying the design requirements.

Program of Study
Students should keep in mind that the program for the major in Engineering is based upon a rigid set of prerequisites, beginning with adequate preparation in high school mathematics, physics, and chemistry. Therefore, the course sequence should not be changed except for the most compelling reasons. Students must have their programs approved by an academic counselor in Engineering. A sample program of study is available in the Student Affairs Office.

Graduate Study
Fadi J. Kurdahi, Associate Dean for Graduate and Professional Studies
Graduate Student Affairs Office
204 Rockwell Engineering Center
949-824-8090

Admissions
For information on requirements for admission to graduate study at UCI, contact the appropriate Engineering department, concentration director, or the Graduate Student Affairs Office in The Henry Samueli School of Engineering. Additional information is available in the Catalogue’s Graduate Division section. Admission to graduate standing in The Henry Samueli School of Engineering is generally accorded to those possessing a B.S. in engineering or an allied field obtained with an acceptable level of scholarship from an institution of recognized standing. Those seeking admission without the prerequisite scholarship record may, in some cases, undertake remedial work; if completed at the stipulated academic level, they will be considered for admission. Those admitted from an allied field may be required to take supplementary upper-division courses in basic engineering subjects. The Graduate Record Examination (GRE) General Test is required of all applicants.

Financial Support
Teaching assistantships and fellowships are available to qualified applicants. (Applicants should contact the Department or concentration director to which they are applying for information.) Research assistantships are available through individual faculty members. Although not required, it is beneficial for applicants to contact the faculty member directly to establish the potential for research support. Early applications have a stronger chance for financial support.

Part-Time Study
Those students who are employed may pursue the M.S. on a part-time basis, carrying fewer units per quarter. Since University residency requirements necessitate the successful completion of a minimum number of units in graduate or upper-division work in each of at least three regular University quarters, part-time students should seek the advice of a counselor in The Henry Samueli School of Engineering Graduate Student Affairs Office and the approval of the Graduate Advisor in their program. M.S. programs must be completed in four calendar years from the date of admission. Students taking courses in UCI Division of Continuing Education prior to enrollment in a graduate program should consult the following section on Transfer of Courses.

Transfer and Substitution of Courses
Upon petition, a limited number of upper-division undergraduate or graduate-level courses taken through UCI Division of Continuing Education, at another UC campus, or in another accredited university may be credited toward the M.S. after admission. The applicability of transfer or substitution courses must be approved by the student’s department, the School’s Associate Dean, and the Graduate Dean of the University, in accordance with Academic Senate regulations. Also in accordance with UC Academic Senate policy, transfer credit for the M.S. cannot be used to reduce the minimum requirement in strictly graduate (200 series) courses.
Graduate Specialization in Teaching
The graduate specialization in Teaching will allow Engineering Ph.D. students to receive practical training in pedagogy designed to enhance their knowledge and skill set for future teaching careers. Students will gain knowledge and background in college-level teaching and learning from a variety of sources, and experience in instructional practices. Students completing the specialization in Teaching must fulfill all of their Ph.D. requirements in addition to the specialization requirements. Upon fulfillment of the requirements, students will be provided with a certificate of completion. Upon receipt of the certificate of completion, the students can then append "Specialization in Teaching" to their curricula vitae. For details visit the Graduate Specialization in Teaching website (http://www.eng.uci.edu/current/graduate/specialization-in-teaching).

The graduate specialization in Teaching is available only for certain degree programs and concentrations:

- Ph.D. in Biomedical Engineering
- Ph.D. in Electrical and Computer Engineering
- Ph.D. in Engineering with a concentration in Materials and Manufacturing Technology

Graduate Programs
For specific information about program requirements, click on the links below.

Biomedical Engineering
Biotechnology Management
Chemical and Biochemical Engineering
Civil Engineering
Electrical and Computer Engineering (Concentration in Computer Engineering)
Electrical and Computer Engineering (Concentration in Electrical Engineering)
Engineering (Concentration in Environmental Engineering)
Engineering (Concentration in Materials and Manufacturing Technology)
Engineering Management
Materials Science and Engineering
Mechanical and Aerospace Engineering

The M.S. and Ph.D. program in Networked Systems is supervised by an interdepartmental faculty group. Information is available in the Interdisciplinary Studies section of the Catalogue.

M.S. and Ph.D. in Engineering with a Concentration in Materials and Manufacturing Technology
204 Rockwell Engineering Center; 949-824-8090
Chin C. Lee, Director and Graduate Advisor

Materials and Manufacturing Technology (MMT) is concerned with the generation and application of knowledge relating the composition, structure, and processing of materials to their properties and applications, as well as the manufacturing technologies needed for production. During the past two decades, MMT has become an important component of modern engineering education, partly because of the increased level of sophistication required of engineering materials in a rapidly changing technological society, and partly because the selection of materials has increasingly become an integral part of almost every modern engineering design. In fact, further improvements in design are now viewed more and more as primarily materials and manufacturing issues. Both the development of new materials and the understanding of present-day materials demand a thorough knowledge of basic engineering and scientific principles including, for example, crystal structure, mechanics, mechanical behavior, electronic, optical and magnetic properties, thermodynamics, phase equilibria, heat transfer, diffusion, and the physics and chemistry of solids and chemical reactions.

The field of MMT ranks high on the list of top careers for scientists and engineers. The services of these engineers and scientists are required in a variety of engineering operations dealing, for example, with design of semiconductors and optoelectronic devices, development of new technologies based on composites and high-temperature materials, biomedical products, performance (quality, reliability, safety, energy efficiency) in automobile and aircraft components, improvement in nondestructive testing techniques, corrosion behavior in refineries, radiation damage in nuclear power plants, fabrication of steels, and construction of highways and bridges.

Subjects of interest in Materials and Manufacturing Technology cover a wide spectrum, ranging from metals, optical and electronic materials to superconductive materials, ceramics, advanced composites, and biomaterials. In addition, the emerging new research and technological areas in materials are in many cases interdisciplinary. Accordingly, the principal objective of the graduate curriculum is to integrate a student’s area of emphasis—whether it be chemical processing and production, electronic and photonic materials and devices, electronic manufacturing and packaging, or materials engineering—into the whole of materials and manufacturing technology. Such integration will increase familiarity with other disciplines and provide students with the breadth they need to face the challenges of current and future technology.
Students with a bachelor’s degree may pursue either the M.S. or Ph.D. in Engineering with a concentration in Materials and Manufacturing Technology (MMT). If students choose to enter the Ph.D. program directly, it is a requirement that they earn an M.S. along the way toward the completion of their Ph.D.

Recommended Background

Given the nature of Materials and Manufacturing Technology as an interdisciplinary program, students having a background and suitable training in either Materials, Engineering (Biomedical, Civil, Chemical, Electrical, and Mechanical), or the Physical Sciences (Physics, Chemistry, Geology) are encouraged to participate. Recommended background courses include an introduction to materials, thermodynamics, mechanical properties, and electrical/optical/magnetic properties. A student with an insufficient background may be required to take remedial undergraduate courses following matriculation as a graduate student.

Core Requirement

Because of the interdepartmental nature of the concentration, it is important to establish a common foundation in Materials and Manufacturing Technology (MMT) for students from various backgrounds. This foundation is sufficiently covered in MMT courses that are listed below and that deal with the following topics: ENGRMSE 200 Crystalline Solids: Structure, Imperfections, and Properties; ENGRMAE 252 Fundamentals of Microfabrication or ENGR 265 Advanced Manufacturing; ENGRMAE 259 Mechanical Behavior of Solids - Atomistic Theories; BME 261 Biomedical Microdevices. Core courses must be completed with a grade of B (3.0) or better.

Electives

Electives are grouped into four areas of emphasis.

Chemical Processing and Production:
- CHEM 213 Chemical Kinetics
- CBEMS 210 Reaction Engineering
- CBEMS 220 Transport Phenomena
- CBEMS 230 Applied Engineering Mathematics I
- CBEMS 240 Advanced Engineering Thermodynamics

Electronic and Photonic Materials and Devices:
- BME 210 Molecular and Cellular Engineering
- EECS 174 Semiconductor Devices
- EECS 176 Fundamentals of Solid-State Electronics and Materials
- EECS 188 Optical Electronics
- EECS 277A Advanced Semiconductor Devices I
- EECS 277B Advanced Semiconductor Devices II
- EECS 277C Nanotechnology
- EECS 285A Optical Communications
- EECS 285B Lasers and Photonics
- EECS 280A Advanced Engineering Electromagnetics I
- EECS 280B Advanced Engineering Electromagnetics II

Biomedical and Electronic Manufacturing:
- BME 251 Engineering Medical Optics
- BME 260 Microfluids and Lab-On-A-Chip
- BME 262 Microimplants
- EECS 279/ENGRMAE 249 Micro-Sensors and Actuators
- ENGRMAE 212 Engineering Electrochemistry: Fundamentals and Applications
- ENGRMAE 247/EECS 278 Micro-System Design
- ENGRMAE 250 Biorobotics
- ENGRMAE 253 Advanced BIOMEMS Manufacturing Techniques

Materials Engineering:
- CHEM 225 Polymer Chemistry: Synthesis and Characterization of Polymers
- ENGRCEE 243 Mechanics of Composite Materials
- ENGRMSE 205 Materials Physics
- ENGRMSE 251 Dislocation Theory
- ENGRMSE 252 Theory of Diffusion
- ENGRMSE 254 Polymer Science and Engineering
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGRMSE 255A</td>
<td>Design with Ceramic Materials</td>
</tr>
<tr>
<td>ENGRMSE 256A</td>
<td>Mechanical Behavior of Engineering Materials</td>
</tr>
<tr>
<td>ENGRMSE 256B</td>
<td>Fracture of Engineering Materials</td>
</tr>
<tr>
<td>ENGRMSE 265</td>
<td>Phase Transformations</td>
</tr>
<tr>
<td>ENGRMSE 268</td>
<td>Principles of Coatings, Thin Films, and Multi-layers</td>
</tr>
<tr>
<td>PHYSICS 238A-238B-238C</td>
<td>Condensed Matter Physics and Condensed Matter Physics</td>
</tr>
</tbody>
</table>

It should be noted that specific course requirements within the area of emphasis are decided based on consultation with the Director of the MMT concentration.

Master of Science Degree

Two options are available for M.S. students: a thesis option and a comprehensive examination option. Both options require the completion of at least 12 courses of study.

Plan I. Thesis Option

For the thesis option, students are required to complete an original research project and write an M.S. thesis. A committee of three full-time faculty members is appointed to guide the development of the thesis. Students must also obtain approval for a complete program of study from the program director. At least seven courses (3-unit or 4-unit) must be taken from courses numbered 200–289, among which at least four courses (3-unit or 4-unit) are from MMT core courses and at least three courses (3-unit or 4-unit) are in the area of emphasis approved by the faculty advisor and the graduate advisor. Four units of BME 296, CBEMS 296, EECS 296, ENGR 296, ENGRCEE 296, or ENGRMAE 296 count as the equivalence of one course. Up to three courses equivalent of BME 296, CBEMS 296, EECS 296, ENGR 296, ENGRCEE 296, or ENGRMAE 296 and up to two courses (3-unit or 4-unit) of upper-division undergraduate elective courses taken as a graduate student at UCI can be applied toward the 12-course requirement.

Plan II. Comprehensive Examination Option

For the comprehensive examination option, students are required to complete minimally 12 courses (3-unit or 4-unit) of study. At least eight courses (3-unit or 4-unit) must be taken from courses numbered 200–289, among which at least four courses (3-unit or 4-unit) are from MMT core courses and at least four courses (3-unit or 4-unit) are in the area of emphasis approved by the faculty advisor and the graduate advisor. Four units of BME 299, CBEMS 299, EECS 299, ENGRCEE 299, or ENGRMAE 299 count as the equivalence of one course. One course equivalent of BME 299, CBEMS 299, EECS 299, ENGRCEE 299, or ENGRMAE 299 and up to two courses (3-unit or 4-unit) of upper-division undergraduate elective courses taken as a graduate student at UCI can be applied toward the 12-course requirement.

In the last quarter, an oral comprehensive examination on the contents of study will be given by a committee of three faculty members including the advisor and two members appointed by the program director. Part-time study for the M.S. is available and encouraged for engineers working in local industries. Registration for part-time study must be approved in advance by the MMT program director, the School's Associate Dean, and the Graduate Dean.

In addition to fulfilling the course requirements outlined above, it is a University requirement for the Master of Science degree that students fulfill a minimum of 36 units of study.

Concurrent Study in the Program in Law and Graduate Studies (PLGS)

Students have the option to pursue a coordinated curriculum leading to a J.D. degree from the School of Law in conjunction with a Master's or Ph.D. in Engineering with a concentration in Materials and Manufacturing Technology. For students pursuing the M.S. thesis option, 8 units of research can be substituted for law electives, and comprehensive exam students can petition two course (non-course or area of emphasis courses) to be substituted by law electives.

Doctor of Philosophy Degree

The Ph.D. in Engineering with a concentration in Materials and Manufacturing Technology requires a commitment on the part of the student to dedicated study and collaboration with the faculty. Ph.D. students are selected on the basis of outstanding demonstrated potential and scholarship. Applicants must hold the appropriate prerequisite degrees from recognized institutions of high standing. Students entering with a master’s degree may be required to take additional course work, to be decided in consultation with the graduate advisor and the program director. Students without a master’s degree may be admitted into the Ph.D. program. However, these students will be required to complete the degree requirements above for the master’s degree prior to working on doctoral studies. After substantial academic preparation, Ph.D. candidates work under the supervision of faculty advisors. The process involves immersion in a research atmosphere and culminates in the production of original research results presented in a dissertation.

Milestones to be passed in the Ph.D. program include the following: acceptance into a research group by the faculty advisor during the student’s first year of study, successful completion of the Ph.D. preliminary examination during years one or two, development of a research proposal, passing the
qualifying examination during year three (second year for those who entered with a master’s degree), and the successful completion and defense of the dissertation during the fourth or fifth year. There is no foreign language requirement.

The degree is granted upon the recommendation of the doctoral committee and the Dean of Graduate Division. The normative time for completion of the Ph.D. is five years (four years for students who entered with a master’s degree). The maximum time permitted is seven years.

M.S. in Engineering Management

204 Rockwell Engineering Center; 949-824-8090
http://www.eng.uci.edu/admissions/graduate/programs-and-concentrations/engineering-management

John C. LaRue, **Associate Dean for Student Affairs, The Henry Samueli School of Engineering**

Gerardo Okhuysen, **Equity Advisor & Associate Dean of MBA Programs, The Paul Merage School of Business**

Engineering Management Steering Committee

Imran S. Currim: Marketing research, customer choice, design and marketing of products and services, customer behavior online, and assessing the impact of competitive product and service features and marketing efforts on consumer choice and market share

Peter Burke: Nano-electronics, bio-nanotechnology

Fadi J. Kurdahi: VLSI system design, design automation of digital systems

John C. LaRue: Fluid mechanics, micro-electrical-mechanical systems (MEMS), turbulence, heat transfer, instrumentation

Marc J. Madou: Fundamental aspects of micro/nano-electromechanical systems (MEMS/NEMS), biosensors, nanofluidics, biomimetics

Gerardo Okhuysen: Management of task and environmental uncertainty

Jean-Daniel M. Saphores: Transportation economics, planning and policy, environmental and natural resource economics and policy, quantitative methods

The Master of Science in Engineering Management is a graduate degree jointly offered by The Paul Merage School of Business and The Henry Samueli School of Engineering that will prepare engineers for leadership roles in technology, science, government, and engineering-based companies and organizations. The curriculum includes courses in engineering from The Henry Samueli School of Engineering and courses in business administration from The Paul Merage School of Business. Students will emerge as innovators by taking on the role of business and engineering project managers tasked with solving complex engineering product development challenges through consulting projects, business plans, and exposure to current issues within the engineering sector. Through this process, quantitative and qualitative skills along with business communication skills will be developed.

This competitive major teaches business from the engineering perspective and engineering from the business perspective, and students will learn to think about their work through the lens of innovation and to develop a crucial view to enhance their careers.

Admissions

Applicants apply directly to The Samueli School for the M.S. in Engineering Management. Applicants must meet any applicable prerequisite requirements for the specific engineering specialization they wish to pursue. Admission to graduate standing in The Samueli School of Engineering is generally accorded to those possessing at least a B.S. in engineering or an allied field obtained with an acceptable level of scholarship from an institution of recognized standing. Those seeking admission without the prerequisite scholarship record may, in some cases, undertake remedial work; if completed at the stipulated academic level, they will be considered for admission. Those admitted from an allied field may be required to take supplementary upper-division courses in basic engineering subjects.

The Samueli and Merage Schools will evaluate applicants on their prior academic record and their potential for management and leadership as demonstrated in submitted application materials including work experience and in an interview. These materials will include university transcripts, GRE test scores, letters of recommendation, and a Statement of Purpose. Competitive applicants will be interviewed by the Merage School.

Master of Science Degree: Plan II: Comprehensive Exam Option

The M.S. degree requires the completion of designated course work which corresponds to a minimum of 17 courses beyond the bachelor’s degree. As part of the program, students must complete a two-week orientation and an intensive course in early to mid-September preceding the fall quarter which presents fundamental concepts of management to initiate students into the concrete challenges that managers in high-performing organizations typically confront.

Core Requirements

Due to the interdisciplinary nature of this degree, it is important to establish a common foundation in Engineering Management for students from various backgrounds. This foundation is sufficiently covered in Engineering Management courses that are listed below and that deal with the following topics:

- ENGR 280: Entrepreneurship for Scientists and Engineers
Electives

Business. In addition to the core courses listed above, at least five additional courses from The Merage School of Business are required. (Students will be recommended certain classes based on career tracks they plan to pursue.)

- Three Merage School M.B.A. core courses;
- Two additional courses from a selected group of either core or elective courses.

M.B.A. Courses

Core:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMTMBA 201A</td>
<td>Statistics for Management</td>
</tr>
<tr>
<td>MGMTMBA 201B</td>
<td>Management Science</td>
</tr>
<tr>
<td>MGMTMBA 202</td>
<td>Organizational Behavior for Management</td>
</tr>
<tr>
<td>MGMTMBA 203A</td>
<td>Financial Reporting for Management</td>
</tr>
<tr>
<td>MGMTMBA 203B</td>
<td>Driving Profitability Through Management Accounting</td>
</tr>
<tr>
<td>MGMTMBA 204A</td>
<td>Microeconomics for Management</td>
</tr>
<tr>
<td>MGMTMBA 204B</td>
<td>Macroeconomics for Management</td>
</tr>
<tr>
<td>MGMTMBA 205</td>
<td>Marketing Management</td>
</tr>
<tr>
<td>MGMTMBA 206</td>
<td>Business and Government</td>
</tr>
<tr>
<td>MGMTMBA 207</td>
<td>Information Technology for Management</td>
</tr>
<tr>
<td>MGMTMBA 208</td>
<td>Operations Management</td>
</tr>
<tr>
<td>MGMTMBA 209A</td>
<td>Managerial Finance</td>
</tr>
<tr>
<td>MGMTMBA 210</td>
<td>Strategic Management</td>
</tr>
</tbody>
</table>

Electives:

Refer to the Business School section of the Catalogue for a list of current M.B.A. electives.

Engineering. In addition to the core courses listed above, at least five courses from The Samueli School are required. (Students will be recommended certain classes based on career tracks they plan to pursue.)

- Three courses from a chosen primary specialization in Engineering: Biomedical Engineering, Chemical and Biochemical Engineering, Civil Engineering, Electrical and Computer Engineering, Materials Science and Engineering, or Mechanical and Aerospace Engineering;
- Two additional elective courses chosen from the primary specialization, from another specialization, or from other courses within or outside The Samueli School as approved by the Director or Director-Elect.

Approved Specialization Courses

Biomedical Engineering:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 210</td>
<td>Molecular and Cellular Engineering</td>
</tr>
<tr>
<td>BME 213</td>
<td>Systems Cell and Developmental Biology</td>
</tr>
<tr>
<td>BME 220</td>
<td>Sensory Motor Systems</td>
</tr>
<tr>
<td>BME 221</td>
<td>Organ Transport Systems</td>
</tr>
<tr>
<td>BME 230A</td>
<td>Applied Engineering Mathematics I</td>
</tr>
<tr>
<td>BME 230B</td>
<td>Applied Engineering Mathematics II</td>
</tr>
<tr>
<td>BME 233</td>
<td>Dynamic Systems in Biology and Medicine</td>
</tr>
<tr>
<td>BME 251</td>
<td>Engineering Medical Optics</td>
</tr>
<tr>
<td>BME 260</td>
<td>Microfluids and Lab-On-A-Chip</td>
</tr>
<tr>
<td>BME 261</td>
<td>Biomedical Microdevices</td>
</tr>
<tr>
<td>Course</td>
<td>Title</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>BME 262</td>
<td>Microimplants</td>
</tr>
<tr>
<td>Chemical and Biochemical Engineering:</td>
<td></td>
</tr>
<tr>
<td>CBEMS 195</td>
<td>Special Topics in Chemical Engineering and Materials Science</td>
</tr>
<tr>
<td>CBEMS 218</td>
<td>Bioengineering with Recombinant Microorganisms</td>
</tr>
<tr>
<td>CBEMS 221</td>
<td>Drug Delivery</td>
</tr>
<tr>
<td>CBEMS 232</td>
<td>Bioseparation Processes</td>
</tr>
<tr>
<td>CBEMS 249</td>
<td>Special Topics in Chemical Engineering and Materials Science</td>
</tr>
<tr>
<td>Civil Engineering:</td>
<td></td>
</tr>
<tr>
<td>ENGRCEE 220A</td>
<td>Travel Demand Analysis I</td>
</tr>
<tr>
<td>ENGRCEE 221A</td>
<td>Transportation Systems Analysis I</td>
</tr>
<tr>
<td>ENGRCEE 225B</td>
<td>Transportation Planning Models II</td>
</tr>
<tr>
<td>ENGRCEE 249</td>
<td>Earthquake Engineering</td>
</tr>
<tr>
<td>ENGRCEE 250</td>
<td>Finite Element Method in Structural Engineering</td>
</tr>
<tr>
<td>ENGRCEE 262</td>
<td>Environmental Chemistry II</td>
</tr>
<tr>
<td>ENGRCEE 263</td>
<td>Advanced Biological Treatment Processes</td>
</tr>
<tr>
<td>ENGRCEE 265</td>
<td>Physical-Chemical Treatment Processes</td>
</tr>
<tr>
<td>ENGRCEE 272</td>
<td>Groundwater Hydrology</td>
</tr>
<tr>
<td>ENGRCEE 273</td>
<td>Watershed Modeling</td>
</tr>
<tr>
<td>ENGRCEE 276</td>
<td>Hydrology</td>
</tr>
<tr>
<td>ENGRCEE 281</td>
<td>Structural Reliability</td>
</tr>
<tr>
<td>Electrical and Computer Engineering:</td>
<td></td>
</tr>
<tr>
<td>EECS 202A</td>
<td>Principles of Imaging</td>
</tr>
<tr>
<td>EECS 211</td>
<td>Advanced System Software</td>
</tr>
<tr>
<td>EECS 213</td>
<td>Computer Architecture</td>
</tr>
<tr>
<td>EECS 215</td>
<td>Design and Analysis of Algorithms</td>
</tr>
<tr>
<td>EECS 217</td>
<td>VLSI System Design</td>
</tr>
<tr>
<td>EECS 222</td>
<td>Embedded System Modeling</td>
</tr>
<tr>
<td>EECS 225</td>
<td>Embedded Systems Design</td>
</tr>
<tr>
<td>EECS 241A</td>
<td>Digital Communications I</td>
</tr>
<tr>
<td>EECS 248A</td>
<td>Computer and Communication Networks</td>
</tr>
<tr>
<td>EECS 261A</td>
<td>Linear Optimization Methods</td>
</tr>
<tr>
<td>EECS 267A</td>
<td>Industrial and Power Electronics</td>
</tr>
<tr>
<td>EECS 277C</td>
<td>Nanotechnology</td>
</tr>
<tr>
<td>EECS 278</td>
<td>Micro-System Design</td>
</tr>
<tr>
<td>EECS 279</td>
<td>Micro-Sensors and Actuators</td>
</tr>
<tr>
<td>Materials Science and Engineering:</td>
<td></td>
</tr>
<tr>
<td>CBEMS 221</td>
<td>Drug Delivery</td>
</tr>
<tr>
<td>CBEMS 249</td>
<td>Special Topics in Chemical Engineering and Materials Science</td>
</tr>
<tr>
<td>EECS 277C</td>
<td>Nanotechnology</td>
</tr>
<tr>
<td>ENGRMAE 252</td>
<td>Fundamentals of Microfabrication</td>
</tr>
<tr>
<td>ENGRMAE 254</td>
<td>Polymer Science and Engineering</td>
</tr>
<tr>
<td>ENGRMAE 255A</td>
<td>Design with Ceramic Materials</td>
</tr>
<tr>
<td>ENGRMAE 261</td>
<td>High Temperature Deformation of Engineering Materials</td>
</tr>
<tr>
<td>ENGRMAE 268</td>
<td>Principles of Coatings, Thin Films, and Multi-layers</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering:</td>
<td></td>
</tr>
<tr>
<td>ENGRMAE 207</td>
<td>Methods of Computer Modeling in Engineering and the Sciences</td>
</tr>
<tr>
<td>ENGRMAE 218</td>
<td>Sustainable Energy Systems</td>
</tr>
<tr>
<td>ENGRMAE 247</td>
<td>Micro-System Design</td>
</tr>
<tr>
<td>ENGRMAE 249</td>
<td>Micro-Sensors and Actuators</td>
</tr>
<tr>
<td>ENGRMAE 250</td>
<td>Biorobotics</td>
</tr>
<tr>
<td>ENGRMAE 252</td>
<td>Fundamentals of Microfabrication</td>
</tr>
<tr>
<td>ENGRMAE 253</td>
<td>Advanced BIOMEMS Manufacturing Techniques</td>
</tr>
</tbody>
</table>
M.S. in Biotechnology Management

The M.S. in Biotechnology Management is a joint graduate degree that will prepare scientists for leadership roles in biotechnology, science, and engineering-based companies through a curriculum comprised of courses from the Department of Molecular Biology and Biochemistry (MB&B) in the Francisco J. Ayala School of Biological Sciences, the Department of Biomedical Engineering in The Henry Samueli School of Engineering, and The Paul Merage School of Business. Students will receive advanced training in biotechnology through course work, a teaching laboratory, and two quarters of independent research in a faculty laboratory of their choosing. They will also learn to think as a business manager by solving product development challenges through consulting projects, creating business plans, and by exposure to current issues within the biotechnology sector. Students will develop quantitative and qualitative skills along with business communication skills. Students will learn about business from the biotechnology perspective and biotechnology from the business perspective, and will be taught to think about their work through the lens of innovation, a crucial view for their careers.

Complete program information is available in the Francisco J. Ayala School of Biological Sciences section of the Catalogue.

Faculty

Mohammad Javad Abdolhosseini Qomi, Ph.D. Massachusetts Institute of Technology, Assistant Professor of Civil and Environmental Engineering (mechanics and physics of materials at nano- and meso-scales)

Amir AghaKouchak, Ph.D. University of Stuttgart, Associate Professor of Civil and Environmental Engineering (hydrology, hydroclimatology, data assimilation, remote sensing of critical global water resource issues)

Mohammad A. Al Faruque, Ph.D. University of Karlsruhe, Assistant Professor of Electrical Engineering and Computer Science (system-level design, embedded systems, cyber-physical-systems, multi-core systems)

Nicolaos G. Alexopoulos, Ph.D. University of Michigan, Ann Arbor, Professor Emeritus of Electrical Engineering and Computer Science

Alfredo H.-S. Ang, Ph.D. University of Illinois Urbana-Champaign, Professor Emeritus of Civil and Environmental Engineering

Satya N. Atluri, Sc.D. Massachusetts Institute of Technology, Professor Emeritus of Mechanical and Aerospace Engineering

Ender Ayanoglu, Ph.D. Stanford University, Professor of Electrical Engineering and Computer Science (communication systems, communication theory, communication networks)

Nader Bagherzadeh, Ph.D. University of Texas at Austin, Professor of Electrical Engineering and Computer Science (parallel processing, computer architecture, computer graphics, VLSI design)

Michael W. Berns, Ph.D. Cornell University, Arnold and Mabel Beckman Chair in Laser Biomedicine; Professor of Surgery; Biomedical Engineering; Developmental and Cell Biology (photomedicine, laser microscopy, biomedical devices)

Neil J. Bershad, Ph.D. Rensselaer Polytechnic Institute, Professor Emeritus of Electrical Engineering and Computer Science

James E. Bobrow, Ph.D. University of California, Los Angeles, Professor Emeritus of Mechanical and Aerospace Engineering (robotics, applied nonlinear control, optimization methods)

Elliot L. Botvinick, Ph.D. University of California, San Diego, Associate Professor of Surgery; Biomedical Engineering; Chemical Engineering and Materials Science (laser microbeams, cellular mechanotransduction, mechanobiology)

Ozdal Boyraz, Ph.D. University of Michigan, Associate Professor of Electrical Engineering and Computer Science (silicon photonics and optical communications systems)

James P. Brody, Ph.D. Princeton University, Associate Professor of Biomedical Engineering (bioinformatics, micro-nanoscale systems)

Jacob Brouwer, Ph.D. Massachusetts Institute of Technology, Associate Professor of Mechanical and Aerospace Engineering; Civil and Environmental Engineering (high-temperature electrochemical dynamics, fuel cells, renewable and sustainable energy)

Peter J. Burke, Ph.D. Yale University, Professor of Electrical Engineering and Computer Science; Biomedical Engineering; Chemical Engineering and Materials Science (nano-electronics, bio-nanotechnology)

Filippo Capolino, Ph.D. University of Florence, Associate Professor of Electrical Engineering and Computer Science (optics/electromagnetics in nanostructures and sensors, antennas/microwaves, RF and wireless systems)

Aparna Chandramowlishwaran, Ph.D. Georgia Institute of Technology, Assistant Professor of Electrical Engineering and Computer Science (parallel programming models, domain specific compilers, algorithm-architecture co-design, n-body particle methods, scientific and high-performance computing)
Zhongping Chen, Ph.D. Cornell University, **Professor of Biomedical Engineering; Electrical Engineering and Computer Science; Otolaryngology; Surgery** (biomedical optics, optical coherence tomography, bioMEMS, biomedical devices)

Bernard Choi, Ph.D. University of Texas at Austin, **Associate Professor of Surgery; Biomedical Engineering** (biomedical optics, in vivo optical imaging, microvasculature, light-based therapeutics)

Pai H. Chou, Ph.D. University of Washington, **Professor Emeritus of Electrical Engineering and Computer Science** (embedded systems, wireless sensor networks, medical devices, real-time systems, hardware/software co-synthesis)

William J. Cooper, Ph.D. University of Miami, **Professor of Civil and Environmental Engineering** (environmental chemistry, advanced oxidation processes for water treatment, aquatic photochemistry of carbon cycling)

Jose B. Cruz, Jr., Ph.D. University of Illinois at Urbana-Champaign, **Professor Emeritus of Electrical Engineering and Computer Science**

Nancy A. Da Silva, Ph.D. California Institute of Technology, **Professor of Chemical Engineering and Materials Science; Biomedical Engineering** (molecular biotechnology)

Donald A. Dabdub, Ph.D. California Institute of Technology, **Professor of Mechanical and Aerospace Engineering; Civil and Environmental Engineering** (mathematical modeling of urban and global air pollution, dynamics of atmospheric aerosols, secondary organic aerosols, impact of energy generation on air quality, chemical reactions at gas-liquid interfaces)

Kristen A. Davis, Ph.D. Stanford University, **Assistant Professor of Civil and Environmental Engineering; Earth System Science** (coastal oceanography, fluid mechanics, turbulent flows)

Franco De Flaviis, Ph.D. University of California, Los Angeles, **Professor of Electrical Engineering and Computer Science** (microwave systems, wireless communications, electromagnetic circuit simulations)

Brian Demsky, Ph.D. Massachusetts Institute of Technology, **Associate Professor of Electrical Engineering and Computer Science; Computer Science** (compiler programming, language software engineering, fault tolerance)

Russell L. Detwiler, Ph.D. University of Colorado, **Associate Professor of Civil and Environmental Engineering** (groundwater hydrology, contaminant fate and transport, subsurface process modeling, groundwater/surface-water interaction)

Michelle Digman, Ph.D. University of Illinois at Chicago, **Assistant Professor of Biomedical Engineering; Chemical Engineering and Materials Science; Developmental and Cell Biology** (quantitative imaging techniques to study spatial-temporal dynamics of signaling protein networks in live cells and tissues)

Rainer Doemer, Ph.D. University of Dortmund, **Professor of Electrical Engineering and Computer Science; Computer Science** (system-level design, embedded computer systems, design methodologies, specification and modeling languages)

Timothy L. Downing, Ph.D. University of California, Berkeley, **Assistant Professor of Biomedical Engineering** (stem cells and tissue engineering)

Derek Dunn-Rankin, Ph.D. University of California, Berkeley, **Department Chair and Professor of Mechanical and Aerospace Engineering; Civil and Environmental Engineering; Environmental Health Sciences** (combustion, optical particle sizing, particle aero-dynamics, laser diagnostics and spectroscopy)

James C. Earthman, Ph.D. Stanford University, **Professor of Chemical Engineering and Materials Science; Biomedical Engineering** (biomaterials, dental and orthopaedic implants, green materials, nanocrystalline alloys, deformation and damage processes)

Said E. Elghobashi, Ph.D., D.Sc. Imperial College, University of London, **Professor of Mechanical and Aerospace Engineering** (direct numerical simulation of turbulent, chemically reacting and dispersed two-phase flows)

Ahmed Eltawil, Ph.D. University of California, Los Angeles, **Professor of Electrical Engineering and Computer Science; Interim Director of Master of Embedded and Cyber-Physical System (MECPS)** (design of system and VLSI architectures for broadband wireless communication, implementations and architectures for digital processing)

Leonard A. Ferrari, Ph.D. University of California, Irvine, **Professor Emeritus of Electrical Engineering and Computer Science**

Efi Foufoula-Georgiou, Ph.D., University of Florida; **Associate Dean for Research and Innovation; UCI Distinguished Professor of Civil and Environmental Engineering** (hydrology, water and the environment, precipitation from space)

Daniel D. Gajski, Ph.D. University of Pennsylvania, **Professor Emeritus of Electrical Engineering and Computer Science** (embedded systems, software/hardware design, design methodologies and tools, science of design)

Manuel Gamero-Castaño, Ph.D. Yale University, **Associate Professor of Mechanical and Aerospace Engineering** (electric propulsion, electrospray, atomization, aerosol diagnostics)
Jean-Luc Gaudiot, Ph.D. University of California, Los Angeles, Professor of Electrical Engineering and Computer Science; Computer Science (parallel processing, computer architecture, processor architecture)

Tryphon Georgiou, Ph.D. University of Florida, Professor of Mechanical and Aerospace Engineering (control theory, systems engineering, statistical signal processing, applied mathematics)

Alon A. Gorodetsky, Ph.D. California Institute of Technology, Associate Professor of Chemical Engineering and Materials Science; Chemistry (organic photovoltaics, electrical biosensors, nanotechnology, DNA, materials chemistry)

Stanley B. Grant, Ph.D. California Institute of Technology, Professor of Civil and Environmental Engineering; Chemical Engineering and Materials Science (environmental engineering, inland and coastal water quality, coagulation and filtration of colloidal contaminants, environmental microbiology)

Enrico Gratton, Ph.D. University of Rome, Director of the Laboratory for Fluorescence Dynamics; Professor of Biomedical Engineering; Developmental and Cell Biology; Physics and Astronomy (design of new fluorescence instruments, protein dynamics, single molecule, fluorescence microscopy, photon migration in tissues)

Michael M. Green, Ph.D. University of California, Los Angeles, Associate Dean for Undergraduate Student Affairs of The Henry Samueli School of Engineering; Professor of Electrical Engineering and Computer Science (analog/mixed-signal IC design, broadband circuit design, theory of nonlinear circuits)

Anna Grosberg, Ph.D. California Institute of Technology, Assistant Professor of Biomedical Engineering; Chemical Engineering and Materials Science (computational modeling of biological systems, biomechanics, cardiac tissue engineering)

Jered Haun, Ph.D. University of Pennsylvania, Assistant Professor of Biomedical Engineering; Chemical Engineering and Materials Science (nanotechnology, molecular engineering, computational simulations, targeted drug delivery, clinical cancer detection)

Glenn E. Healey, Ph.D. Stanford University, Professor of Electrical Engineering and Computer Science (machine vision, computer engineering, image processing, computer graphics, intelligent machines)

Payam Heydari, Ph.D. University of Southern California, Professor of Electrical Engineering and Computer Science (design and analysis of analog, RF and mixed-signal integrated circuits, analysis of signal integrity and high-frequency effects of on-chip interconnects in high-speed VLSI circuits)

Allon Hochbaum, Ph.D. University of California, Berkeley, Assistant Professor of Chemical Engineering and Materials Science; Chemistry (nanoscale materials and hybrid bio-inorganic devices for applications in clean energy)

Juan Hong, Ph.D. Purdue University, Professor Emeritus of Chemical Engineering and Materials Science

Kuo-Lin Hau, Ph.D. University of Arizona, Professor in Residence of Civil and Environmental Engineering (remote sensing of precipitation, hydrologic systems modeling, stochastic hydrology, water resources systems planning)

Elliot E. Hui, Ph.D. University of California Berkeley, Associate Professor of Biomedical Engineering (microscale tissue engineering, bioMEMS, cell-cell interactions, global health diagnostics)

Faryar Jabbari, Ph.D. University of California, Los Angeles, Associate Dean for Academic Affairs of The Henry Samueli School of Engineering; Professor of Mechanical and Aerospace Engineering (robust and nonlinear control theory, adaptive parameter identification)

Syed A. Jafar, Ph.D. Stanford University, Professor of Electrical Engineering and Computer Science (wireless communication and information theory)

Hamid Jafarkhani, Ph.D. University of Maryland, College Park, UCI Chancellor’s Professor of Electrical Engineering and Computer Science; Conexant-Broadcom Endowed Chair and Director for the Center for Pervasive Communications and Computing (communication theory, coding, wireless networks, multimedia networking)

R. (Jay) Jayakrishnan, Ph.D. University of Texas at Austin, Professor of Civil and Environmental Engineering (transportation systems analysis)

C. Sunny Jiang, Ph.D. University of South Florida, Department Chair and Professor of Civil and Environmental Engineering; Environmental Health Sciences (water pollution microbiology, environmental biotechnology, aquatic microbial ecology)

Wenlong Jin, Ph.D. University of California, Davis, Associate Professor of Civil and Environmental Engineering (intelligent transportation systems, traffic flow theory, transportation network analysis)

Tibor Juhasz, Ph.D. JATE University of Szeged, Professor of Ophthalmology; Biomedical Engineering (laser-tissue interactions, high-precision microsurgery with lasers, laser applications in ophthalmology, corneal biomechanics)
Pramod Khargonekar, Ph.D. University of Florida, Distinguished Professor of Electrical Engineering and Computer Science (systems and control theory; learning and intelligent systems; applications to renewable energy and smart grid, neural engineering, and economics; leadership and creativity; technology and society)

Arash Kheradvar, M.D., Ph.D. California Institute of Technology, Associate Professor of Biomedical Engineering; Mechanical and Aerospace Engineering (cardiac mechanics, cardiovascular devices, cardiac imaging)

Michelle Khine, Ph.D. University of California, Berkeley, Professor of Biomedical Engineering; Chemical Engineering and Materials Science (development of novel nano- and micro-fabrication technologies and systems for single cell analysis, stem cell research, in-vitro diagnostics)

Selma S. Kia, Ph.D. University of California, Irvine, Assistant Professor of Mechanical and Aerospace Engineering (distributed control and optimization of multi-agent networked systems)

Stuart Kleinfelder, Ph.D. Stanford University, Professor of Electrical Engineering and Computer Science (first integrated sensor/readout arrays for visual, IR, X-ray, charged particles)

Fritjof Kruggel, M.D., Ph.D. Ludwig Maximilian University of Munich, Professor of Biomedical Engineering; Electrical Engineering and Computer Science (biomedical signal and image processing, anatomical and functional neuroimaging in humans, structure-function relationship in the human brain)

Fadi J. Kurdahi, Ph.D. University of Southern California, Associate Dean for Graduate and Professional Studies; Director, Center for Embedded Computer Systems; Professor of Electrical Engineering and Computer Science; Computer Science (VLSI system design, design automation of digital systems)

Tomas Lang, Ph.D. Stanford University, Professor Emeritus of Electrical Engineering and Computer Science

John C. LaRue, Ph.D. University of California, San Diego, Professor of Mechanical and Aerospace Engineering (fluid mechanics, micro-electrical-mechanical systems (MEMS), turbulence, heat transfer, instrumentation)

Enrique Lavernia, Ph.D. Massachusetts Institute of Technology, UCI Provost and Distinguished Professor of Chemical Engineering and Materials Science (nanostructured materials, additive manufacturing, powder metallurgy, mechanical behavior)

Abraham Lee, Ph.D. University of California, Berkeley, William J. Link Professor and Chair of Biomedical Engineering; Mechanical and Aerospace Engineering (Lab-on-a-Chip health monitoring instruments, drug delivery micro/nanoparticles, integrated cell sorting microdevices, lipid vesicles as carriers for cells and biomolecules, high throughput droplet bioassays, microfluidic tactile sensors)

Chin C. Lee, Ph.D. Carnegie Mellon University, Professor of Electrical Engineering and Computer Science (bonding technology, electronic packaging, acoustics, microwaves, semiconductor devices, thermal management)

Henry P. Lee, Ph.D. University of California, Berkeley, Professor of Electrical Engineering and Computer Science (photonics, fiber-optics and compound semiconductors)

Jaeho Lee, Ph.D. Stanford University, Assistant Professor of Mechanical and Aerospace Engineering; Chemical Engineering and Materials Science (nanofabrication and thermoelectric energy conversion)

Anne Lemnitzer, Ph.D. University of California, Los Angeles, Assistant Professor of Civil and Environmental Engineering (geotechnical and earthquake engineering, soil structure interaction, RC design, seismic monitoring)

Guann-Pyng Li, Ph.D. University of California, Los Angeles, Director of the UCI Division of the California Institute for Telecommunications and Information Technology (Calit2); Director of the Integrated Nanosystems Research Facility; Professor of Electrical Engineering and Computer Science; Biomedical Engineering; Chemical Engineering and Materials Science (high-speed semiconductor technology, optoelectronic devices, integrated circuit fabrication and testing)

Han Li, Ph.D. University of California, Los Angeles, Assistant Professor of Chemical Engineering and Materials Science (synthetic biology, microbiology, protein engineering, fermentation and microbial production processes)

Mo Li, Ph.D. University of Michigan, Assistant Professor of Civil and Environmental Engineering; Chemical Engineering and Materials Science (responsive materials, multifunctional materials and structures, fracture mechanics, infrastructure sustainability)

Henry C. Lim, Ph.D. Northwestern University, Professor Emeritus of Chemical Engineering and Materials Science

Kwei-Jay Lin, Ph.D. University of Maryland, Professor of Electrical Engineering and Computer Science; Computer Science (real-time systems, distributed systems, service-oriented computing)

Chang C. Liu, Ph.D. Scripps Research Institute, Assistant Professor of Biomedical Engineering; Chemistry (genetic engineering, directed evolution, synthetic biology, chemical biology)
Feng Liu, Ph.D. Princeton University, Professor of Mechanical and Aerospace Engineering (computational fluid dynamics and combustion, aerodynamics, aeroelasticity, propulsion, turbomachinery aerodynamics and aeromechanics)

Wendy F. Liu, Ph.D. Johns Hopkins University, Assistant Professor of Biomedical Engineering; Chemical Engineering and Materials Science (biomaterials, microdevices in cardiovascular engineering, cell-cell and cell-micro-environment interactions, cell functions and controls)

Beth A. Lopour, Ph.D. University of California, Berkeley, Assistant Professor of Biomedical Engineering; Mechanical and Aerospace Engineering (computational neuroscience, signal processing, mathematical modeling, epilepsy, translational research)

Marc J. Madou, Ph.D. Ghent University, UCI Chancellor’s Professor of Mechanical and Aerospace Engineering; Biomedical Engineering; Chemical Engineering and Materials Science (fundamental aspects of micro/nano-electro-mechanical systems (MEMS/NEMS), biosensors, nanofluidics, biomimetics)

Athina Markopoulou, Ph.D. Stanford University, Associate Professor of Electrical Engineering and Computer Science; Computer Science (networking—reliability and security, multimedia networking, measurement and control, design and analysis of network protocols and algorithms, internet reliability and security, multimedia streaming, network measurements and control)

J. Michael McCarthy, Ph.D. Stanford University, Professor of Mechanical and Aerospace Engineering (machine design and kinematic synthesis of spatial mechanisms and robots)

Michael G. McNally, Ph.D. University of California, Irvine, Professor of Civil and Environmental Engineering; Planning, Policy, and Design (travel behavior, transportation systems analysis)

Kenneth D. Mease, Ph.D. University of Southern California, Professor of Mechanical and Aerospace Engineering (flight guidance and control, nonlinear dynamical systems)

Martha L. Mecartney, Ph.D. Stanford University, Professor of Chemical Engineering and Materials Science (ceramics for energy applications and for use in extreme environments, interfacial design for enhanced physical properties, transmission electron microscopy)

Farghali A. Mohamed, Ph.D. University of California, Berkeley, Professor Emeritus of Chemical Engineering and Materials Science (mechanical behavior of engineering materials such as metals, composites and ceramics, the correlation between behavior and microstructure, creep and superplasticity, mechanisms responsible for strengthening and fracture)

Ali Mohraz, Ph.D. University of Michigan, Ann Arbor, Associate Professor of Chemical Engineering and Materials Science (understand and exploit colloidal interactions, chemistry, assembly, and response to external fields to design microstructured materials with enhanced functionality for composites, biomimetic applications, alternative energy, environmental remediation)

Ayman Mosallam, Ph.D. The Catholic University of America, Professor of Civil and Environmental Engineering (advanced composites and hybrid systems, seismic repair and rehabilitation of structures, blast mitigation and diagnostic/prognostic techniques for infrastructure security)

Daniel R. Mumm, Ph.D. Northwestern University, Associate Professor of Chemical Engineering and Materials Science (development of materials for power generation systems, propulsion, integrated sensing, advanced vehicle concepts and platform protection)

Zoran Nenadic, Ph.D. Washington University, Associate Professor of Biomedical Engineering; Electrical Engineering and Computer Science (adaptive biomedical signal processing, control algorithms for biomedical devices, brain-machine interfaces, modeling and analysis of biological neural networks)

Mikael Nilsson, Ph.D. Chalmers University of Technology, Associate Professor of Chemical Engineering and Materials Science (actinide chemistry, solvent extraction fundamental chemistry and process development, extraction and detection equipment development, radiolysis and phase composition of organic solvent)

Betty H. Olson, Ph.D. University of California, Berkeley, Professor of Civil and Environmental Engineering (molecular applications for optimizing biological processes in wastewater treatment, environmental health, drinking water microbiology)

Xiaoqing Pan, Ph.D. Saarlandes University, Henry Samueli Endowed Chair and Professor of Chemical Engineering and Materials Science; Physics and Astronomy (transmission electron microscopy and materials science)

Dimitri Papamoschou, Ph.D. California Institute of Technology, Professor of Mechanical and Aerospace Engineering (compressible mixing and turbulence, jet noise reduction, diagnostics for compressible flow, acoustics in moving media)

Gerard C. Pardoen, Ph.D. Stanford University, Professor Emeritus of Civil and Environmental Engineering

Regina Ragan, Ph.D. California Institute of Technology, Endowed Chair for the Center for Diversity in Engineering Education; Associate Professor of Chemical Engineering and Materials Science (exploration and development of novel material systems for nanoscale electronic and optoelectronic devices)
Roger H. Rangel, Ph.D. University of California, Berkeley, *Professor of Mechanical and Aerospace Engineering* (fluid dynamics and heat transfer of multiphase systems including spray combustion, atomization and metal spray solidification, applied mathematics and computational methods)

Elizabeth L. Read, Ph.D. University of California, Berkeley, *Assistant Professor of Chemical Engineering and Materials Science; Molecular Biology and Biochemistry* (dynamics of complex biochemical systems, regulation of immune responses)

Wilfred W. Recker, Ph.D. Carnegie Mellon University, *Professor of Civil and Environmental Engineering* (transportation systems modeling, traffic control, and urban systems analysis)

David J. Reinkensmeyer, Ph.D. University of California, Berkeley, *Professor of Anatomy and Neurobiology; Mechanical and Aerospace Engineering; Biomedical Engineering; Physical Medicine and Rehabilitation* (robotics, mechatronics, biomedical engineering, rehabilitation, biomechanics, neural control of movement)

Stephen G. Ritchie, Ph.D. Cornell University, *Director of the Institute of Transportation Studies; Professor of Civil and Environmental Engineering* (transportation engineering, advanced traffic management and control systems, development and application of emerging technologies in transportation)

Diego Rosso, Ph.D. University of California, Los Angeles, *Director of the UCI Water-Energy Nexus Center (WEX); Associate Professor of Civil and Environmental Engineering; Chemical Engineering and Materials Science* (environmental process engineering, mass transfer, wastewater treatment, carbon- and energy-footprint analysis)

Timothy Rupert, Ph.D. Massachusetts Institute of Technology, *Assistant Professor of Mechanical and Aerospace Engineering; Chemical Engineering and Materials Science* (mechanical behavior, nanomaterials, structure property relationships, microstructural stability, grain boundaries and interfaces, materials characterization)

G. Scott Samuelsen, Ph.D. University of California, Berkeley, *Director of Advanced Power and Energy Program; Research Professor and Professor Emeritus of Mechanical and Aerospace Engineering; Civil and Environmental Engineering, Registered Professional Engineer (energy, fuel cells, hydrogen economy, propulsion, combustion and environmental conflict, turbulent transport in complex flows, spray physics, NOx and soot formation, laser diagnostics and experimental methods, application of engineering science to practical propulsion and stationary systems, environmental ethics)

Brett F. Sanders, Ph.D. University of Michigan, *Professor of Civil and Environmental Engineering; Planning, Policy, and Design* (environmental hydrodynamics, computational fluid dynamics, coastal water quality)

Jean-Daniel M. Saphores, Ph.D. Cornell University, *Professor of Civil and Environmental Engineering; Economics; Planning, Policy, and Design* (transportation economics, planning and policy, environmental and natural resource economics and policy, quantitative methods)

Jan Scherfig, Ph.D. University of California, Berkeley, *Professor Emeritus of Civil and Environmental Engineering*, Registered Professional Engineer

William E. Schmitendorf, Ph.D. Purdue University, *Professor Emeritus of Mechanical and Aerospace Engineering*

Julie Schoenung, Ph.D. Massachusetts Institute of Technology, *Professor of Chemical Engineering and Materials Science* (materials selection, green engineering, materials processing and characterization, nanostructured materials, structure-property relationships)

Robin Shepherd, Ph.D. University of Canterbury; D.Sc. University of Leeds, *Professor Emeritus of Civil and Environmental Engineering*, Registered Professional Engineer

Phillip Sheu, Ph.D. University of California, Berkeley, *Professor of Electrical Engineering and Computer Science; Biomedical Engineering; Computer Science* (database systems, interactive multimedia systems)

Frank G. Shi, Ph.D. California Institute of Technology, *Professor of Chemical Engineering and Materials Science* (optoelectronic devices and materials, optoelectronic device packaging materials, optoelectronic medical devices and packaging, white LED technologies, high power LED packaging)

Masanobu Shinozuka, Ph.D. Columbia University, *Professor Emeritus of Civil and Environmental Engineering*

Andrei M. Shkel, Ph.D. University of Wisconsin-Madison, *Professor of Mechanical and Aerospace Engineering; Biomedical Engineering; Electrical Engineering and Computer Science* (design and advanced control of micro-electro-mechanical systems (MEMS), precision micro-sensors and actuators for telecommunication and information technologies, MEMS-based health monitoring systems, disposable diagnostic devices, prosthetic implants)

Athanasios Sideris, Ph.D. University of Southern California, *Professor of Mechanical and Aerospace Engineering* (robust and optimal control theory and design, neural networks, learning systems and algorithms)

William A. Sirignano, Ph.D. Princeton University, *Henry Samuei Endowed Chair in Engineering and Professor of Mechanical and Aerospace Engineering* (combustion theory and computational methods, multiphase flows, high-speed turbulent reacting flows, flame spread, microgravity combustion, miniature combustors, fluid dynamics, applied mathematics)

Jack Sklansky, Sc.D. Columbia University, *Professor Emeritus of Electrical Engineering and Computer Science*
Keyue M. Smedley, Ph.D. California Institute of Technology, Professor of Electrical Engineering and Computer Science (power electronics, alternative energy power generation, and motion control)

Soroosh Sorooshian, Ph.D. University of California, Los Angeles, Director of the Center for Hydrometeorology and Remote Sensing (CHRS); UCI Distinguished Professor of Civil and Environmental Engineering; Earth System Science (hydrology, hydrometeorology and hydroclimate modeling, remote sensing, water sources management)

Allen R. Stubberud, Ph.D. University of California, Los Angeles, Professor Emeritus of Electrical Engineering and Computer Science, Registered Professional Engineer

Lizhi Sun, Ph.D. University of California, Los Angeles, Professor of Civil and Environmental Engineering; Chemical Engineering and Materials Science (micro- and nano-mechanics, composites and nanocomposites, smart materials and structures, multiscale modeling, elastography)

A. Lee Swindlehurst, Ph.D. Stanford University, Professor of Electrical Engineering and Computer Science (signal processing, estimation and detection theory, applications in wireless communications, geo-positioning, radar, sonar, biomedicine)

Haithem Taha, Ph.D. Virginia Polytechnic Institute and State University, Assistant Professor of Mechanical and Aerospace Engineering (dynamics and control, aerodynamic modeling, optimization applications)

Harry H. Tan, Ph.D. University of California, Los Angeles, Professor Emeritus of Electrical Engineering and Computer Science

William C. Tang, Ph.D. University of California, Berkeley, Professor of Biomedical Engineering; Chemical Engineering and Materials Science; Electrical Engineering and Computer Science (micro-electro-mechanical systems (MEMS) nanoscale engineering for biomedical applications, Microsystems integration, microimplants, microbiomechanics, microfluidics)

Bruce Tromberg, Ph.D. University of Tennessee, Director of the Beckman Laser Institute; Professor of Surgery; Biomedical Engineering; Physiology and Biophysics (photon migration, diffuse optical imaging, non-linear optical microscopy, photodynamic therapy)

Chen S. Tsai, Ph.D. Stanford University, UCI Chancellor's Professor of Electrical Engineering and Computer Science (integrated and fiber optics, devices and materials, integrated acoustooptics and magnetooptics, integrated microwave magnetics, Ultrasonic Atomization for Nanoparticles Synthesis, silicon photonics)

Wei Kang (Kevin) Tsai, Ph.D. Massachusetts Institute of Technology, Professor Emeritus of Electrical Engineering and Computer Science

Lorenzo Valdevit, Ph.D. Princeton University, Director of the Institute for Design and Manufacturing Innovation (IDMI); Associate Professor of Mechanical and Aerospace Engineering; Chemical Engineering and Materials Science (multifunctional sandwich structures, thermal protection systems, morphing structures, active materials, MEMS, electronic packaging, cell mechanics)

Vasan Venugopalan, Sc.D. Massachusetts Institute of Technology, Department Chair and Professor of Chemical Engineering and Materials Science; Biomedical Engineering; Mechanical and Aerospace Engineering; Surgery (laser-induced thermal, mechanical and radiative transport processes for application in medical diagnostics, therapeutics, biotechnology, micro-electro-mechanical systems (MEMS))

Roberto Villaverde, Ph.D. University of Illinois Urbana-Champaign, Professor Emeritus of Civil and Environmental Engineering; Registered Professional Engineer

Jasper A. Vrugt, Ph.D. University of Amsterdam, Associate Professor of Civil and Environmental Engineering; Earth System Science (complex systems, modeling, statistics, hydrology, geophysics, ecology, data, optimization, hydropower, data assimilation)

Mark Walter, Ph.D. California Institute of Technology, Lecturer with Security of Employment of Mechanical and Aerospace Engineering (mechanics of materials using advanced experimental and numerical techniques to investigate the initiation and propagation of damage on micro to macro size scales; response of multifunctional materials in simulated application environments; building energy efficiency)

Szu-Wen Wang, Ph.D. Stanford University, Professor of Chemical Engineering and Materials Science; Biomedical Engineering (combining principles of self-assembly with nature-inspired macromolecular systems to engineer new materials and therapeutic strategies)

Yun Wang, Ph.D. Pennsylvania State University, Associate Professor of Mechanical and Aerospace Engineering (fuel cells, computational modeling, thermo-fluidics, two-phase flows, electrochemistry, Computational Fluid Dynamics (CFD), turbulent combustion)

Gregory N. Washington, Ph.D. North Carolina State University, Stacy Nicholas Dean of The Henry Samueli School of Engineering and Professor of Mechanical and Aerospace Engineering (dynamic systems: modeling and control, design and control of mechanically actuated antennas, advanced control of machine tools, design and control of Hybrid Electric Vehicles, structural position, vibration control with smart materials)

H. Kumar Wickramasinghe, Ph.D. University of London, Henry Samueli Endowed Chair in Engineering; Department Chair and Professor of Electrical Engineering and Computer Science; Biomedical Engineering; Chemical Engineering and Materials Science (nanoscale measurements and characterization, scanning probe microscopy, storage technology, nano-bio measurement technology)
Yoon Jin Won, Ph.D. Stanford University, Assistant Professor of Mechanical and Aerospace Engineering (multi-scale structures for thermal and energy applications, in particular fabrication, characterization, and integration of structured materials)

Jann N. Yang, Sc.D. Columbia University, Professor Emeritus of Civil and Environmental Engineering

Albert Fan Yee, Ph.D. University of California, Berkeley, Professor of Chemical Engineering and Materials Science; Biomedical Engineering; Chemistry (materials science aspects of polymers and soft materials, particularly on how they are used to impact nanotechnology)

Farzin Zareian, Ph.D. Stanford University, Associate Professor of Civil and Environmental Engineering (structural engineering, performance-based earthquake engineering, structural reliability, structural control)

Adjunct Professors

Gregory J. Brewer, Ph.D. University of California, San Diego, Adjunct Professor of Biomedical Engineering (neuronal networks, decoding brain learning and memory, brain-inspired computing, Alzheimer's disease, brain aging, neuron cell culture)

Ramon A. Gomez, Ph.D. University of California, Los Angeles, Assistant Adjunct Professor of Electrical Engineering and Computer Science (radio frequency systems, circuit design)

Robert H. Liebeck, Ph.D. University of Illinois, Urbana, Adjunct Professor of Mechanical and Aerospace Engineering (aircraft design)

Vincent G. McDonell, Ph.D. University of California, Irvine, Adjunct Professor of Mechanical and Aerospace Engineering (droplet transport, measurement, simulation, control, analysis of liquid spray and gas fired combustion systems and alternative fuels)

Carsten R. Mehring, Ph.D. University of California, Irvine, Associate Adjunct Professor of Mechanical and Aerospace Engineering (multidisciplinary multi-scale systems and phenomena)

Lawrence J. Muzio, Ph.D. University of California, Berkeley, Adjunct Professor of Mechanical and Aerospace Engineering (thermodynamics, combustion and combustion in practical systems, air pollution formation and control, advanced diagnostics applied to practical combustion systems)

Farzad Naeim, Ph.D. University of Southern California, Adjunct Professor of Civil and Environmental Engineering (theory and practice of structural engineering, earthquake engineering and earthquake resistant design, applied performance-based analysis and design of structures, design of seismic protective systems)

Phu Dinh Nguyen, Ph.D. University of California, Irvine, Assistant Adjunct Professor of Civil and Environmental Engineering (hydrology, water resources, satellite precipitation estimation, flood modeling and forecasting)

Henry Samueli, Ph.D. University of California, Los Angeles, Adjunct Professor of Electrical Engineering and Computer Science (digital signal processing, communications systems engineering, CMOS integrated circuit design for applications in high-speed data transmission systems)

Homayoun Yousefi'zadeh, Ph.D. University of Southern California, Adjunct Professor of Electrical Engineering and Computer Science (communications networks)