Transportation Science, M.S.

This program is currently not admitting students. Please visit the program website (http://www.transci.uci.edu/) for more information.

Jean-Daniel Saphores, Director
949-824-2611
aregan@uci.edu
http://www.transci.uci.edu/

The graduate program in Transportation Science includes faculty from four academic units: the Department of Civil and Environmental Engineering in The Henry Samueli School of Engineering, the Department of Economics in the School of Social Sciences, the Department of Planning, Policy, and Design in the School of Social Ecology, and the Department of Computer Science in the Bren School of Information and Computer Sciences. The program is designed to educate students in a broad set of competencies and perspectives that mirror the actual practice of current transportation research. The M.S. and Ph.D. degrees in Transportation Science are offered.

Admission is limited to a small number of exceptionally talented, independent, and self-disciplined students. The deadline for application for admission is March 1 for fall quarter. A second window for application for admission for winter or spring quarters is open from April 15 through June 1 but funding options for this second window may be very limited. All applicants must take the Graduate Record Exam (GRE) prior to the application deadline. Applicants whose first language is not English must also submit Test of English as a Foreign Language (TOEFL) scores.

The M.S. program is a 44-unit program with two options: (1) thesis; and (2) comprehensive examination. Students will choose one of these two options. For both options, no more than 12 credit hours of non-transportation courses can count toward the required number of course-work units. Exceptions must be approved by the student’s advisor and the Director of the Transportation Science program. Opportunities are available for part-time study toward the M.S. degree. The normative time for completion of the M.S. is four quarters, with some students finishing in a single academic year, and others staying into a second year. Many students will choose to stay for five or six quarters, and the maximum time permitted is four years.

Requirements

Core courses must be chosen from lists in each of the four program areas: Area 1 (Transportation Systems Engineering), Area 2 (Urban and Transportation Economics) and Area 3 (Transportation Planning), and Area 4 (Computer Science).

Substitutions and exceptions must be requested ahead of time and must be approved by the Director of the Transportation Science program.

Each student must choose at least two graduate courses from Area 1, at least one graduate course from Areas 2 and 3, and at least four additional graduate courses from any of the four areas. At least five of the eight core courses must be transportation courses, which are indicated by an asterisk.

Specific courses in each of these areas are shown below:

<table>
<thead>
<tr>
<th>Area 1 (Transportation Systems Engineering)</th>
<th>Area 2 (Urban and Transportation Economics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGRCEE 220A Travel Demand Analysis I ∗</td>
<td>ECON 210A-210B Microeconomic Theory I</td>
</tr>
<tr>
<td>ENGRCEE 220B Travel Demand Analysis II</td>
<td>and Microeconomic Theory II</td>
</tr>
<tr>
<td>ENGRCEE 221A Transportation Systems Analysis I ∗</td>
<td>ECON 281A-281B Urban Economics I</td>
</tr>
<tr>
<td>ENGRCEE 222 Transit Systems Planning</td>
<td>and Urban Economics II ∗</td>
</tr>
<tr>
<td>ENGRCEE 223 Transportation Systems III: Planning and Forecasting</td>
<td>ECON 281B Urban Economics II</td>
</tr>
<tr>
<td>ENGRCEE 224A Transportation Data Analysis I ∗</td>
<td>ECON 282B Transportation Economics II</td>
</tr>
<tr>
<td>ENGRCEE 226A Traffic Flow Theory I</td>
<td>Economics 289 A–Z*</td>
</tr>
<tr>
<td>ENGRCEE 228A Urban Transportation Networks I ∗</td>
<td>Area 3 (Transportation Planning)</td>
</tr>
<tr>
<td>Area 3 (Transportation Planning)</td>
<td>UPPP 207 Land-Use Law</td>
</tr>
</tbody>
</table>

UCI General Catalogue 2024-25
UPPP 212 Transportation Planning and Policy
UPPP 235 Geographic Information Systems (GIS) Problem Solving in Planning
UPPP 237 Introduction to Geographic Information Systems

Pre-approved upper-division undergraduate courses, independent study units, or seminars:

Area 4 (Computer Science)

COMPSCI 206 Principles of Scientific Computing
COMPSCI 248A Introduction to Ubiquitous Computing
COMPSCI 260 Fundamentals of the Design and Analysis of Algorithms
COMPSCI 268 Introduction to Optimization
COMPSCI 271 Introduction to Artificial Intelligence
COMPSCI 274A Probabilistic Learning: Theory and Algorithms

A. Pre-approved upper-division undergraduate courses:

ECON 105A-105B Intermediate Quantitative Economics I and Intermediate Quantitative Economics II
ECON 123A-123B Econometrics I and Econometrics II
ECON 123B Econometrics II
ECON 149 Special Topics in Economics of Public and Private Organizations
ENGRCEE 121 Transportation Systems I: Analysis and Design
ENGRCEE 122 Transportation Systems II: Operations and Control
ENGRCEE 123 Transportation Systems III: Planning and Forecasting
ENGRCEE 124 Transportation Systems IV: Freeway Operations and Control
I&C SCI 45C Programming in C/C++ as a Second Language
I&C SCI 46 Data Structure Implementation and Analysis
COMPSCI 115 Computer Simulation
COMPSCI 121 Information Retrieval
COMPSCI 122A Introduction to Data Management

B. Independent study units:

ECON 299 Independent Study
ENGRCEE 296 Master of Science Thesis Research
ENGRCEE 298 Special Topics in Civil and Environmental Engineering
ENGRCEE 299 Individual Research
UPPP 298 Directed Studies in Urban Planning
UPPP 299 Independent Study in Urban Planning
COMPSCI 298 Thesis Supervision
COMPSCI 299 Individual Study

C. Students who choose the thesis option may also select up to eight units of the following:

ENGRCEE 296 Master of Science Thesis Research (4 to 12 units)
UPPP 298 Directed Studies in Urban Planning
COMPSCI 298 Thesis Supervision

1 NOTE: ECON 281A-ECON 281B and ECON 282B require ECON 210A or consent of the instructor.

After approval from their advisor, students may petition the Director of the Transportation Science Program with requests for substitution of the required courses.

Plan I: Thesis Option

Students who select the thesis option must complete at least 44 units of study, up to eight of which can be taken in conjunction with the thesis research topic (thesis units should be taken in the home department of the faculty advisor); they must also complete at least 36 units of course work with no more than four units of pre-approved upper-division undergraduate courses, independent study units, or seminars. The thesis should reflect an original research investigation and it must be approved by a thesis committee of at least three full-time faculty members, a majority of which must be Transportation Science faculty.
Plan II: Comprehensive Examination Option

Students who select the comprehensive examination option must successfully complete 44 units of course work and pass a comprehensive examination. These units may include no more than 12 units of pre-approved upper-division undergraduate courses, independent study units, or seminars. The comprehensive examination requirements may be met with a publication-quality paper dealing with a transportation topic; this paper must be approved by the student’s advisor and the Director of the Transportation Science program.

UCI is a major research university and has an excellent library collection, as well as special interlibrary loan arrangements with other University of California libraries including the Transportation Library at Berkeley. Research is coordinated with the Irvine branch of the Institute of Transportation Studies (ITS). Approximately 30 to 40 graduate students are employed as research assistants each year in ITS. Research covers a broad spectrum of transportation issues. Current funded research projects focus upon intelligent transportation systems (ITS), particularly advanced transportation management systems; planning and analysis of transportation systems; transportation systems operation and control; transportation engineering; transportation safety; road and congestion pricing; environmental and energy issues and demand for alternative fuel vehicles; public transit operations, transportation-land use interactions, demand for autos, and travel demand.

ITS is part of the University of California Transportation Center, one of ten federally designated centers of excellence for transportation research. The transportation research program at UCI is also supported by the Advanced Transportation Management Systems (ATMS) Laboratories. The Institute maintains a regular publications series documenting research conducted within its programs and is the editorial headquarters of the Journal of Regional Science.