Biomedical Engineering, M.S.

The Biomedical Engineering faculty have special interest and expertise in four thrust areas: Biophotonics, Biomedical Micro/Nanoscale Systems, Bioimaging and Computation, and Molecular and Cellular Engineering. Biophotonics faculty are interested in photomedicine, laser microscopy, optical coherence tomography, medical imaging, and phototherapy. Biomedical Micro/Nanoscale Systems faculty are interested in molecular engineering, polymer chemistry, molecular motors, design and fabrication of microelectromechanical systems (MEMS), integrated microsystems to study intercellular signaling, and single molecule studies of protein dynamics. Biomedical Computation faculty are interested in computational biology, biomedical signal and image processing, medical imaging, computational methods in protein engineering, and data mining.

Because of its interdisciplinary nature, biomedical engineering attracts students with a variety of backgrounds. Thus, the requirements for admission are tailored to students who have a bachelor's degree in an engineering, physical science, or biological science discipline, with a grade point average of 3.20 or higher in their upper-division course work. The minimum course work requirements for admission are six quarters of calculus through linear algebra and ordinary differential equations, three quarters of calculus-based physics, three quarters of chemistry, and two quarters of biology. Students without a physics, chemistry, or engineering undergraduate degree may be required to take additional relevant undergraduate engineering courses during their first year in the program; any such requirements will be specifically determined by the BME Graduate Committee on a case-by-case basis and will be made known to the applicant at the time of acceptance to the program.

The recommended minimum combined verbal and quantitative portion of the GRE is 310, or a minimum combined MCAT score in Verbal Reasoning, Physical Sciences, and Biological Sciences problems of 508. A minimum score of 94 on the Test of English as a Foreign Language (TOEFL iBT) is recommended of all international students whose native language is not English. In addition, all applicants must submit two letters of recommendation.

Exceptionally promising UCI undergraduates may apply for admission through The Henry Samueli School of Engineering’s accelerated M.S. and M.S./Ph.D. program, however, these students must satisfy the course work and letters of recommendation requirements described above.

Core Requirement

Both the M.S. and Ph.D. require the students to complete 42 course units. These units include six core courses, the BME 298 seminar series, two elective courses, and four units of independent research.

A. Complete the following core courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 210</td>
<td>Molecular and Cellular Engineering</td>
</tr>
<tr>
<td>BME 220</td>
<td>Sensory Motor Systems</td>
</tr>
<tr>
<td>BME 221</td>
<td>Organ Transport Systems</td>
</tr>
<tr>
<td>BME 230A</td>
<td>Applied Engineering Mathematics I</td>
</tr>
<tr>
<td>BME 230B</td>
<td>Applied Engineering Mathematics II</td>
</tr>
<tr>
<td>BME 240</td>
<td>Introduction to Clinical Medicine for Biomedical Engineering</td>
</tr>
</tbody>
</table>

B. Complete:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 298</td>
<td>Seminars in Biomedical Engineering (three quarters)</td>
</tr>
</tbody>
</table>

C. Complete two electives

D. Complete four units of independent research

The core courses cover the basics of cells, tissues, and physiology at the microscopic and macroscopic scale, engineering mathematics, and clinical theory. Core requirements can be waived for students entering the Ph.D. program with an M.S. degree in Biomedical Engineering.

Elective Requirement

The two elective courses required to fulfill the course requirements for the M.S. and Ph.D. are offered within The Henry Samueli School of Engineering and the Schools of Biological Sciences, Physical Sciences, and Medicine. The electives must provide breadth in biomedical engineering, but also provide specific skills necessary to the specific research the student may undertake as part of the degree requirements. The selection of these courses should be based upon approval of the student's faculty advisor. Upper-division undergraduate courses and courses outside of the HSSoE may be selected upon approval of the BME Graduate Advisor. Elective requirements can be waived for students entering the Ph.D. program with an M.S. in Biomedical Engineering.

Students must successfully complete a minimum of 42 units of course work, as listed under “Core Requirement” and “Elective Requirement” above. A maximum of eight M.S. research units (i.e., BME 296) may be applied toward the 42-unit requirement.

In addition, the M.S. requires conducting a focused research project. Students must select a thesis advisor and complete an original research investigation including a written thesis, and obtain approval of the thesis by a thesis committee. During their research project, students are expected to enroll in at least 12 units of independent research per quarter.
Biomedical Engineering, M.S.

The degree will be granted upon the recommendation of the Chair of the Department of Biomedical Engineering and The Henry Samueli School of Engineering Associate Dean for Student Affairs. The maximum time permitted is three years.

NOTE: Students who entered prior to fall of 2012 should follow the course requirements outlined within the Catalogue of the year they entered. The changes in number of units per course is not intended to change the course requirements for the degree nor to have any impact in the number of courses students are taking.

Although a student is not required to formally choose a specific research focus area, four research thrust areas have been identified for the program: Biophotonics, Biomedical Micro/Nanoscale Systems, Bioimaging & Computation, and Molecular & Cellular Engineering. These areas capitalize on existing strengths within The Henry Samueli School of Engineering and UCI as a whole, interact in a synergistic fashion, and will train biomedical engineers who are in demand in both private industry and academia.

Biophotonics. This research area includes the use of light to probe individual cells and tissues and whole organs for diagnostic and therapeutic purposes. The research areas include both fundamental investigation on the basic mechanisms of light interaction with biological systems and the clinical application of light to treat and diagnose disease. Current and future foci of the faculty are (1) microscope-based optical techniques to manipulate and study cells and organelles; (2) development of optically based technologies for the non-invasive diagnosis of cells and tissues using techniques that include fiber-optic-based sensors, delivery systems, and imaging systems; and (3) development of optically based devices for minimally invasive surgery.

Biomedical Micro/Nanoscale Systems. This class of research areas encompasses the understanding, use and design of biomedical devices and systems that are at the micron or submicron level. Current strengths within The Henry Samueli School of Engineering and the UCI faculty as a whole include biomaterials, micro-electromechanical systems (MEMS), and the design of new biomedical molecules. The focus of biomedical engineering research in this area is the integration of micro and nano-scale systems with the needs of clinical medicine. Projected areas of growth include (1) micro/nano-electromechanical systems (M/NEMS) for biomedical devices, biofluid assay and micro implantable prosthesis (2) programmable DNA/ molecular microchip for sequencing and diagnostics; (3) cellular, tissue, and organ constructs on-a-chip; and (4) biomaterials and self-assembled nanostructures for biosensors and drug delivery.

Biomedical Imaging & Computation. Biomedical computational technologies include both advanced computational techniques, as well as advanced biomedical database systems and knowledge-base systems. Computational technologies that will be developed in this research area include (1) methods for biomedical analysis and diagnosis such as physical modeling of light-tissue interactions, atomic-level interactions, image processing, pattern recognition, and machine-learning algorithms; (2) language instruction and platform standardization; and (3) machine-patient interfaces. Areas of research related to biomedical database systems include the development of new technologies which can capture the rich semantics of biomedical information for intelligent reasoning.

Molecular & Cellular Engineering. Rapid developments in genetics, molecular biology, and cellular biology have extended the reach of engineering into the subcellular, cellular, and tissue size scales. As a result, several new fields including genetic engineering, cell-based therapy, and tissue engineering have emerged and matured in the past decades with the broad goal of extracting and applying engineering design principles to the most fundamental levels of biological organization.

Program in Law and Graduate Studies (J.D./M.S.-BME; J.D./Ph.D.-BME)

Highly-qualified students interested in combining the study of law with graduate qualifications in the BME program are invited to undertake concurrent degree study under the auspices of UC Irvine’s Program in Law and Graduate Studies (PLGS). Students in this program pursue a coordinated curriculum leading to a J.D. from the School of Law in conjunction with a Master’s or Ph.D. in the BME program. Additional information is available from the PLGS Program Director’s Office, 949-824-4158, or by email to plgs@law.uci.edu. A full description of the program, with links to all relevant application information, can be found at the School of Law Concurrent Degree Programs website (http://www.law.uci.edu/academics/interdisciplinary-studies/concurrent-degrees.html) and in the Law School section of the Catalogue.