Materials Science and Engineering, M.S.

The MSE graduate degree program is hosted by the Department of Materials Science and Engineering (MSE). Faculty who may serve as advisors are listed as affiliated with the MSE Department and include faculty with strong materials science and engineering research programs from other departments. The formal degree that is awarded upon successful completion of the program is either the M.S. or Ph.D. in Materials Science and Engineering.

Current research programs include nanomaterials, nanostructures, nanoelectronics, nanodevices, nanocharacterization, device/system packaging materials, materials for fuel cells and related alternative energy systems, biocompatible materials, soft materials such as biological materials and polymeric materials, electronic and photonic materials, hybrid materials, interfacial engineering of materials, computational materials science, and multifunctional materials. Faculty with relevant research are affiliated with the Integrated Nanofabrication Research Facility (INRF), the National Fuel Cell Research Center (NFCRC), the California Institute for Telecommunications and Information Technology (Calit2), the Advanced Power and Energy Program (APEP), the Laboratory for Electron and X-ray Instrumentation (LEXI), and the Irvine Materials Research Institute (IMRI), the Institute for Design and Manufacturing Innovation (IDMI), the Advanced Casting Research Center (ACRC), and the Materials Design and Synthesis Center (MDSC), among others.

Specific Fields of Emphasis
The Materials faculty at UCI have special interest and expertise in all areas of modern materials and technologies, including biomaterials, energy materials, advanced ceramics, polymers and nanocomposite materials, structural and nanostructured metallic materials, micro/nano-device materials, device/system packaging materials, computational materials science, advanced and additive manufacturing, and multifunctional materials.

Given the nature of Materials Science and Engineering as a cross-disciplinary program, students having a background and suitable training in Materials, Engineering (Mechanical, Electrical, Civil, Chemical, Aerospace), and the Physical Sciences (Physics, Chemistry, Geology) are encouraged to participate. A student with an insufficient background may be required to take remedial undergraduate courses. Recommended background courses include an introduction to materials science and engineering, thermodynamics, mechanical behavior, and electrical/optical/magnetic behavior.

The M.S. reflects achievement of an advanced level of competence for professional practice of materials science and engineering. Two options are available: a thesis option and a comprehensive examination option.

Required Courses
Students are required to take the following five courses for the M.S. and as a basis for the Ph.D. preliminary examination.

<table>
<thead>
<tr>
<th>Structure of Materials and Defects:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE 200</td>
<td>Structure of Materials</td>
</tr>
</tbody>
</table>

Electrical and Optical Behavior:

| MSE 205 | Materials Physics |

Mechanical Behavior:

| MSE 256A | Mechanical Behavior of Engineering Materials |

Thermodynamics:

| MSE 265A | Materials Thermodynamics and Statistical Mechanics |

Kinetics:

| MSE 265B | Phase Transformations and Kinetic Phenomena in Materials |

Electives
Faculty advisors should be consulted on the selection of elective courses. All graduate courses offered in MSE are potential electives. Graduate-level courses offered in other Engineering departments and relevant graduate courses from other schools may also be taken as electives.

Plan I: Thesis Option
For the M.S. thesis option, students are required to complete a research study of great depth and originality and obtain approval for a complete program of study. A committee of three full-time faculty members is appointed to guide development of the thesis. A minimum of 36 units is required for the M.S.

For the thesis option, the following are required: five required core courses; three quarters of MSE 298 (Department Seminar); four additional graduate elective courses numbered 200–289 (or 200-295 if offered by other departments) for 3 or more units each, related to their field of graduate studies, and approved by the graduate advisor. Up to two of these elective courses can be substituted by up to eight units of MSE 296 (M.S. Thesis Research), and one of these elective courses may be substituted by an upper-division undergraduate elective course if the course is not a part of the required MSE undergraduate core curriculum and is approved by the MSE graduate advisor.

Full-time graduate students must enroll in the departmental seminar each quarter during their first year unless exempt by petition.
Plan II: Comprehensive Examination Option

For the comprehensive examination option, students are required to complete 36 units of study and a comprehensive examination.

The following are required: five required core courses; three quarters of MSE 298 (Department Seminar); and a minimum of four additional graduate elective courses for 3 or more units numbered 200–289 (or 200-295 if offered by other departments), related to their field of graduate studies, and approved by the graduate advisor. One of these elective courses may be substituted by an upper-division undergraduate elective course if the course is not a part of the required MSE undergraduate core curriculum and is approved by the MSE graduate advisor.

Research units (MSE 296/MSE 299) do not count towards the degree requirements of the Comprehensive Exam Option. Full-time graduate students must enroll in the departmental seminar each quarter during their first year unless exempt by petition.

In addition to fulfilling the course requirements outlined above, it is a University requirement for the Master of Science degree that students fulfill a minimum of 36 units of study.